Increasing amounts of sunflower seeds increase CLA and vaccenic acid content in milk fat from dairy cows

Tina Skau Nielsen
Danish Institute of Agricultural Sciences, Research Centre Foulum
Dept. Animal Health, Welfare and Nutrition
What is CLA?

* cis-9, cis-12, C18:2 (Linoleic acid) *

* cis-9, trans-11, CLA 75-90% of total CLA in milk fat *

* trans-10, cis-12, CLA *

Adapted from Bessa et al. (2000)
Why is CLA interesting?

- Anti-carcinogenic
- Anti-atherosclerotic
- Anti-diabetogenic
- Anti-adipogenic
- Bone formation
- Immune function

Isomer specific effect of CLA
Origin of milk fat CLA

Rumen

Linolenic acid
\(cis-9, \, cis-12, \, cis-15\)
\(\text{C18:3}\)

\(\downarrow\)

\(cis-9, \, trans-11, \, cis-15, \, \text{C18:3}\)

\(\downarrow\)

\(trans-11, \, cis-15\)
\(\text{C18:2}\)

\(\downarrow\)

\(\text{CLA}\)
\(cis-9, \, trans-11\)

\(\downarrow\)

Vaccenic acid
\(trans-11, \, \text{C18:1}\)

\(\downarrow\)

\(\text{C18:0}\)

Stearic acid

Mammary gland

CLA
\(cis-9, \, trans-11\)

\(\uparrow\)

\(\Delta^9\)-desaturase

Vaccenic acid
\(trans-11, \, \text{C18:1}\)

Adapted from Bauman (2003)
Alternative biohydrogenation pathway of linoleic acid under certain dietary conditions

Rumen

Linoleic acid

CLA

\(_{cis-9, trans-11}\)

Vaccenic acid

\(_{trans-11, C18:1}\)

C18:0

Stearic acid

CLA

\(_{trans-10, cis-12}\)

\(_{trans-10, C18:1}\)

C18:0

Stearic acid

Adapted from Griinari & Bauman (1999)
Objective

Determine the effect of increasing amounts of sunflower seeds in the diet on CLA and vaccenic acid concentrations in milk

Experiment: 24 cows - 5 week study period

<table>
<thead>
<tr>
<th></th>
<th>Dietary treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I (control)</td>
</tr>
<tr>
<td>% of dry matter</td>
<td></td>
</tr>
<tr>
<td>Sunflower seeds</td>
<td>0</td>
</tr>
<tr>
<td>Grass silage</td>
<td>55</td>
</tr>
<tr>
<td>FA, g/kg dry matter</td>
<td>12</td>
</tr>
</tbody>
</table>
Fatty acid composition of different fat sources

<table>
<thead>
<tr>
<th></th>
<th>C16:0</th>
<th>C18:0</th>
<th>C18:1</th>
<th>C18:2</th>
<th>C18:3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans(^1)</td>
<td>12</td>
<td>4</td>
<td>23</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>Rapeseed cake(^1)</td>
<td>6</td>
<td>2</td>
<td>59</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>Sunflower seeds(^1)</td>
<td>6</td>
<td>4</td>
<td>26</td>
<td>63</td>
<td>0.3</td>
</tr>
<tr>
<td>Peanut oil(^2)</td>
<td>12</td>
<td>3</td>
<td>51</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Linseed(^2)</td>
<td>7</td>
<td>4</td>
<td>23</td>
<td>15</td>
<td>51</td>
</tr>
</tbody>
</table>

1 Nielsen et al. (unpublished)
2 Kelly et al. (1998)
Daily feed intake and milk production

<table>
<thead>
<tr>
<th></th>
<th>Treatment group</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>P-value</td>
</tr>
<tr>
<td>Feed intake, kg DM</td>
<td>16.8<sup>a</sup></td>
<td>16.0<sup>a</sup></td>
<td>13.4<sup>b</sup></td>
<td>13.5<sup>b</sup></td>
<td>**</td>
</tr>
<tr>
<td>Milk, kg</td>
<td>27.6<sup>a</sup></td>
<td>26.5<sup>a</sup></td>
<td>24.0<sup>b</sup></td>
<td>21.8<sup>b</sup></td>
<td>**</td>
</tr>
<tr>
<td>ECM, kg</td>
<td>26.2<sup>a</sup></td>
<td>25.4<sup>a</sup></td>
<td>23.6<sup>b</sup></td>
<td>22.3<sup>b</sup></td>
<td>***</td>
</tr>
<tr>
<td>Fat, %</td>
<td>3.79<sup>a</sup></td>
<td>3.81<sup>a</sup></td>
<td>4.00<sup>ab</sup></td>
<td>4.41<sup>b</sup></td>
<td>0.05</td>
</tr>
<tr>
<td>Protein, %</td>
<td>3.29</td>
<td>3.27</td>
<td>3.10</td>
<td>3.17</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Level of dietary fat and milk fat and protein percentage

Fat
\[y = 0.012x + 3.5 \]
\[R^2 = 0.81 \]
\[P < 0.001 \]

Protein
\[y = -0.00003x + 3.2 \]
\[R^2 = 0.0002 \]
\[P = 0.98 \]
Temporal pattern of milk fat CLA

Cis-9, trans-11 CLA, g/100 g FA

- 0% Sunflower seeds
- 5% Sunflower seeds
- 10% Sunflower seeds
- 16% Sunflower seeds

Experimental week
Vaccenic acid, g/100 g FA

\[y = 0.34x + 0.11 \]
\[R^2 = 0.8 \]

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/100 g FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis-9, trans-11 CLA</td>
<td>0.49a</td>
<td>0.84ab</td>
<td>1.20b</td>
<td>1.81c</td>
<td>***</td>
</tr>
<tr>
<td>Vaccenic acid</td>
<td>1.07a</td>
<td>2.13b</td>
<td>3.47c</td>
<td>4.79d</td>
<td>***</td>
</tr>
</tbody>
</table>
Individual variation among cows

cis-9, trans-11 CLA, g/100 g FA

Treatment group
Conclusions

• The effect of sunflower seeds on milk fat CLA and vaccenic acid was dose dependent

• CLA and vaccenic acid concentration in milk can be enhanced more than 3 times by adding high levels of sunflower seeds to the diet

• High levels of sunflower seeds in the diet was not associated with milk fat depression – grass silage effective forage source in maintaining normal rumen function and biohydrogenation of PUFA

• Feed intake, milk production and milk protein may be compromised by high levels of sunflower seeds
Thank you for your attention !!