OPTIMISATION OF THE SAMPLING STRATEGY FOR ESTABLISHING A GENE BANK:

STORING PrP ALLELES FOLLOWING A SCRAPIE ERADICATION PLAN AS A CASE STUDY

J. Fernández, T. Roughsedge, J. A. Woolliams and B. Villanueva
GERMOPLASM BANKS

✓ Reservoirs of genetic information

✓ Complementation of management strategies on “living populations”
When is a germplasm bank worthy?

✓ Loss of genetic variability

Genetic drift

Selection

Natural

Artificial
- Reduced census sizes
 - endangered populations

- Artificial selection
 - “classic” breeding programmes
 - eradication programmes
Transmissible Spongiform Encephalopathy

“SCRAPIE”

ARR ARQ AHR AHQ VRQ

Future reintroduction

- disease is not a concern
 ⇒ reintroduce all removed alleles

- effect of allele on other trait
 ⇒ replace ARR by a single allele

- associated variability
 ⇒ reintroduce all removed alleles
More complex OBJECTIVE

- optimal contributions per candidate donor

 ✓ Locus of interest

 ⇒ collecting predetermined frequencies

 ✓ Non-linked loci

 ⇒ keeping genetic variability
Minimum Quadratic Distance

\[\min (\text{target freq.} - \text{bank freq.})^2 \]

\(s. \ a. \) global bank coancestry

\(s. \ a. \) within-allele bank coancestry

\[\min \text{ distance} + \lambda (\text{coancestry}) \]

\(\lambda \): importance of genetic variability

\(\lambda\uparrow\uparrow \): target frequencies may be unfeasible

\(\lambda\downarrow\downarrow \): variability only accounted for after frequency term
MATERIAL AND METHODS

- Allelic frequencies
 - \(P_{\text{mean}} \): 0.52 ARR, 0.33 ARQ, 0.02 ARH, 0.08 AHQ and 0.05 VRQ
 - \(P_{\text{equal}} \): 0.2 for all alleles
 - \(P_{h_{\text{ARR}}} \): 0.80 ARR and 0.05 the rest
 - \(P_{l_{\text{ARR}}} \): 0.04 ARR and 0.24 the rest

- Population size
 - \(S \): 100 candidates
 - \(L \): 200 candidates

- Genetic diversity
 - \(C_{\text{low}} \): \(f = 0.01 \)
 - \(C_{\text{med}} \): \(f = 0.20 \)
 - \(C_{\text{high}} \): \(f = 0.40 \)

- Cost function
 - £120 per ram / £ 2.5 per collected dose
Computer simulations

✓ All combination of factors
 ⇒ mimic different breed types

✓ 20 replicates per scenario

✓ Controlled parameters
 ⇒ alleles frequencies
 ⇒ global coancestry
 ⇒ coancestry within alleles
 ⇒ distribution of contributions
 ⇒ cost of the program

BANK

no. donors
doses per donor
type of donor
Degree of coancestry in the breed

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{mean}</td>
<td>WR</td>
<td>.058</td>
<td>.162</td>
</tr>
<tr>
<td></td>
<td><.005</td>
<td>.009</td>
<td>.079</td>
</tr>
<tr>
<td>P_{hARR}</td>
<td>WR</td>
<td>.065</td>
<td>.175</td>
</tr>
<tr>
<td></td>
<td><.005</td>
<td>.009</td>
<td>.044</td>
</tr>
<tr>
<td>P_{LARR}</td>
<td>WR</td>
<td>.010</td>
<td>.016</td>
</tr>
<tr>
<td></td>
<td><.005</td>
<td>.009</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td><.005</td>
<td>.009</td>
<td>.017</td>
</tr>
</tbody>
</table>

Allelic

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{mean}</td>
<td>WR</td>
<td>.059</td>
<td>.162</td>
</tr>
<tr>
<td></td>
<td><.050</td>
<td>.033</td>
<td>.070</td>
</tr>
<tr>
<td>P_{hARR}</td>
<td>WR</td>
<td>.065</td>
<td>.168</td>
</tr>
<tr>
<td></td>
<td><.010</td>
<td>.016</td>
<td>.040</td>
</tr>
<tr>
<td>P_{LARR}</td>
<td>WR</td>
<td>.010</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td><.010</td>
<td>.010</td>
<td>.014</td>
</tr>
<tr>
<td>P_{equa}</td>
<td>WR</td>
<td>.012</td>
<td>.020</td>
</tr>
<tr>
<td></td>
<td><.010</td>
<td>.010</td>
<td>.015</td>
</tr>
</tbody>
</table>
SUMMARISING …

✓ Effective in balancing frequencies/diversity

✓ Main factors
 ⇒ allelic frequencies
 ⇒ diversity in target population

✓ Heterozygotes favoured
 \[\text{two alleles at a time (cheap)}\]
 \[\text{speed of reintroduction}\]

✓ Costs
 ⇒ careful design before starting the program
✓ Other diseases with genetic determination

✓ Marker assisted fixation of QTLs

✓ Conservation programmes
 ⇒ maintenance of frequencies in adaptative locus
 ⇒ use of molecular markers