Stable C and N isotope analyses in muscle to discriminate dietary background in lambs

S. De Smet¹, K. Raes¹, E. Claeys¹, P. Boeckx², S. Kelly³

¹Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, 9090 Melle, Belgium
²Laboratory of Applied Physical Chemistry-ISOFYS, Coupure Links 653, 9000 Gent, Belgium
³Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK

57th EAAP Annual Meeting, Antalya, 17-20 September 2006
Session N18.9, Abstract no. 594

Member of the Food2Know network – www.food2know.be

Background

• Increasing interest in traceability
 – Need for markers in end-products that allow distinguishing and tracing back production and feeding systems
 – Plant biomarkers, indirect markers, physical markers…

• Various analytical and spectroscopic methods reported for this purpose
 – E.g. stable isotope ratios, NMR-techniques, chromatographic methods

Prache et al. (2005) Small Ruminant Research 59: 157
Franke et al. (2005) Eur Food Res Technol 221: 493
Stable isotope analyses

- Dietary isotope compositions influence isotope compositions in animal tissues → useful markers
 - Inference of C₃ and C₄ plant material in cattle diets based on large difference in δ¹³C value between C₃ (e.g. temperate grasses; Calvin cycle; mean δ¹³C value -27‰) and C₄ plant species (e.g. maize; Hatch-Slack cycle; mean δ¹³C value -13‰), e.g. beef : De Smet et al. (2004), Bahar et al. (2005)
 - Animal tissue δ¹⁵N less specific for dietary inputs and more dependent on metabolism, but may reflect presence of leguminous plants and application of N fertilisation, e.g. milk : Kornexl et al. (1997); beef : Schmidt et al. (2005)
 - Authentication of the geographic origin of lamb (Piasentier et al., 2003) and beef (Renou et al., 2004; Boner and Förstel, 2004; Schmidt et al., 2005), and production origin of Iberian pigs (Gonzalez-Martin et al., 1999, 2001)

Aim of this study

- Examine the potential of stable C and N isotope analyses in muscle for tracing back diets in lambs
 - Discriminate pasturing versus indoor feeding?
 ~ δ¹³C analyses
 - Discriminate organic versus conventional feeding?
 ~ δ¹⁵N analyses
Material and methods

• Trial 1
 – Pastured group (n=4, males): slaughtered at weaning, exclusively organic pasturing with ewe
 – Indoor fed groups (females) on hay/concentrate (50/50 DM) diet for 3 months

<table>
<thead>
<tr>
<th># lambs</th>
<th>Conventional feed</th>
<th>Organic feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% maize</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>18% maize</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

– *Longissimus*, plasma and feed samples

Material and methods (2)

• Trial 2
 – Three groups of lambs (each n=7) exclusively pastured for three months after weaning

 Botanically diverse: creeping bentgrass, soft brome, timothee ...

 Leguminosa rich: 40% white clover, 20% lucerne ...

 Intensive Ryegrass: 70% perennial ryegrass ...

– *Longissimus* samples at slaughter
Material and methods (3)

- Stable C and N isotope analyses by CF-IRMS

\[\delta^{13}C \text{ or } \delta^{15}N (\text{‰}) = \frac{(R_{\text{sample}} - R_{\text{standard}})}{R_{\text{standard}}} \times 1000 \]

\[R_{\text{sample}} = \frac{^{13}C / ^{12}C \text{ or } ^{15}N / ^{14}N}{R_{\text{standard}} = \text{international standard}} \]

δ13C values (‰) (Trial 1)

Indoor fed hay / concentrate (50/50 DM)

- Plasma start
- Plasma month 1
- Plasma month 2
- Plasma month 3
- LT muscle
- Feed

18% maize 0% maize
Laboratory for Animal Nutrition and Animal Product Quality
http://www.lanupro.UGent.be – Stefaan.DeSmet@UGent.be

δ¹³C values (‰)

LT muscle (Trial 1)

- Pasture
- Hay/concentrate (18% maize)
- Hay/concentrate (0% maize)

δ¹⁵N values (‰)

(Trial 1)

- Plasma start
- Plasma month 1
- Plasma month 2
- Plasma month 3
- LT muscle
- Feed

Indoor fed hay / concentrate (50/50 DM)
Laboratory for Animal Nutrition and Animal Product Quality
http://www.lanupro.UGent.be – Stefaan.DeSmet@UGent.be

δ¹⁵N values (‰) LT muscle (Trial 1)

- pasturing
- organic feed
- conventional feed

Group discrimination (Trial 1)

Boner and Förstel (2004): "δ¹³C values below -20‰ threshold for organic farming" – questionable!
Stable isotope composition feeds

<table>
<thead>
<tr>
<th></th>
<th>δ^{13}C (‰)</th>
<th>δ^{15}N (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organic</td>
<td>Conventional</td>
</tr>
<tr>
<td>Maize</td>
<td>-12.0</td>
<td>-11.4</td>
</tr>
<tr>
<td>Wheat</td>
<td>-26.3</td>
<td>-26.6</td>
</tr>
<tr>
<td>Barley</td>
<td>-25.2</td>
<td>-27.6</td>
</tr>
<tr>
<td>Lucerne</td>
<td>-25.5</td>
<td>-28.6</td>
</tr>
<tr>
<td>Soybean</td>
<td></td>
<td>-25.4</td>
</tr>
<tr>
<td>Sunflower seeds</td>
<td></td>
<td>-26.0</td>
</tr>
<tr>
<td>Hay</td>
<td>-28.7</td>
<td>-29.3</td>
</tr>
</tbody>
</table>

Group discrimination (Trial 2)

95% correct classification after cross-validation
Conclusions

- Combined stable C and N isotope analyses in muscle or plasma did not allow discrimination between organic and conventional feeding.
- The use of concentrates versus pasturing and the type of pasture could be distinguished.
Thanks for your attention

Acknowledgements

The Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Vlaanderen) for financial support

Contact

Stefaan.DeSmet@UGent.be