Responses of North American and New Zealand strains of Holstein Friesian to homeostatic challenges during early and mid lactation

J. Patton¹, ², F.P. O’Mara², J.J. Murphy¹ and S.T. Butler¹

¹Teagasc, Moorepark Dairy Production Research Centre, Cork, Ireland

²School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Ireland.
Introduction

- **Genetic selection for milk yield:**
 - Increased partitioning of ingested nutrients to milk production
 - Increased mobilization of body reserves in support of milk
 - Greater energy deficits in early lactation

- *Greater nutrient partitioning likely involved in compromised fertility*
Moorepark Strain Study

- **North American (NA) Holstein Friesian**
 - Genetically selected:
 - In a high concentrate system
 - For maximal milk volume
 - For increased body size and angularity

- **New Zealand Holstein Friesian (NZ)**
 - Genetically selected:
 - In a pasture system
 - For milk production efficiency
 - For improved body condition score & fertility
Moorepark Strain Comparison Study

Body Condition Score (BCS) profiles for NA and NZ strains of Holstein Friesian 2001-05 (McCarthy et al, 2007)
Hypothesis

‘Differences in nutrient partitioning between the HP and NZ genetic strains are the result of altered tissue responsiveness to homeostatic stimuli’
‘To investigate the physiological differences in nutrient partitioning by comparing the responses of the strains to a series of metabolic challenges’
Metabolic challenges

- **Principle:** Animals that differ in their partitioning of nutrients will have different responses to infusions of metabolites and metabolic hormones.

- **Methodology:**
 - Metabolite/metabolic hormone infused into bloodstream at a fixed concentration.
 - Responses measured by monitoring changes in plasma concentrations of metabolites and hormones.
Metabolic challenges

- **Glucose Tolerance Test**
 - Measures tissue response to glucose
 - (glucose disposal, insulin response)

- **Epinephrine Challenge**
 - Measures response to catabolic stimulus
 - (NEFA and glucose)

- **Insulin Challenge**
 - Measures response to anabolic stimulus
 - (glucose and NEFA)

- Response to each challenge measured as changes to blood glucose, NEFA and insulin profiles
Experimental Design

- 10 mature HP and 10 NZ cows
- Metabolic challenges carried out at 32 ± 0.48 (T1) and $d137 \pm 2.44$ (T2) of lactation
- Indwelling jugular catheters fitted
- Infusion of glucose, epinephrine and insulin on consecutive days
- Frequent blood sampling from -45 to 180 min relative to infusion
Statistical Analysis

- Responses calculated as:
 - Area under response curve (AUC)
 - Clearance rate (CR)
 - Half life ($t^{1/2}$)

- Data analyzed as repeated measures using PROC MIXED in SAS
Area Under Response Curve

Area Under Curve (AUC)
Response Curve

Plasma Glucose (Mmol/L)

Time (min) relative to challenge
Response Curve

- Clearance Rate (CR)
- Half-Life ($t_{1/2}$)

Time (min) relative to challenge

Plasma Glucose (Mmol/L)
RESULTS
Glucose Tolerance Test

Time (min) relative to challenge

Plasma Glucose (Mmol/L)

T1

Time (min) relative to challenge

Plasma Insulin (U/mL)

T2

NA ♦
NZ ■

Plasma NEFA (Mmol/L)
Glucose Tolerance Test
Glucose Tolerance Test

Greater Clearance Rate and shorter half-life for NZ at T2
Epinephrine Challenge

![Graphs showing plasma insulin, glucose, and NEFA levels over time relative to challenge for T1 and T2.](image-url)
Epinephrine Challenge

T1

- Plasma cortisol (ng/ml)
- Time (min) Relative to Challenge

T2

- Plasma cortisol (ng/ml)
- Time (min) relative to challenge

NA ♦
NZ ■
Epinephrine Challenge

Greater glucose AUC for NA strain

Plasma glucose (Mmol/L)

Time (min) Relative to Challenge

Greater glucose AUC for NA strain
Epinephrine Challenge

T1

T2

NA ♦
NZ ■

Plasma Insulin (μU/mL)

Plasma Glucose (Mmol/L)

Plasma NEFA (Mmol/L)

Time (min) relative to challenge

Time (min) Relative to Challenge
Epinephrine Challenge

![Graph showing the response of T1 and T2 to epinephrine challenge.](image)
Epinephrine Challenge

Greater insulin AUC for NA strain
Insulin Challenge
Insulin Challenge

Plasma Insulin (U/mL)

Time (min) Relative to Challenge

Plasma Glucose (mmol/L)

Time (min) Relative to Challenge

Plasma NEFA (mmol/L)

Time (min) Relative to Challenge

NA ♦

NZ ■
Insulin Challenge

Greater NEFA AUC for NA at T1
BCS at time of homeostatic challenges

Homeostatic challenges

Week of lactation

BCS units

P = 0.8

P = 0.02

NA

NZ
Results Summary

Glucose tolerance test:
- No strain differences in insulin or NEFA response
- Greater glucose clearance rate and shorter half-life for NZ strain at T2

Epinephrine Challenge
- Greater glucose response for NA strain
- NA cows tended to have a greater insulin response

Insulin Challenge
- Greater NEFA response for HP strain at T1
- No strain effects on insulin half-life or clearance
Conclusions

- Results suggest that NA cows have enhanced hepatic glycogenolysis but similar lipolytic responses to a catabolic stimulus.

- Indications that higher basal circulating NEFA concentrations in the NA genotype during early lactation are not due to diminished adipose tissue responsiveness to insulin.

- Glucose clearance rate greater for NZ cows in mid-lactation......likely plays a role in the increased body tissue accretion in this genotype.

This data is in press (Animal)
Thank you......Questions?