Fine Mapping a QTL for Somatic Cell Score in the German Holstein

C. Baes, M. Mayer, N. Reinsch
J. Tetens, J. Bennewitz, G. Thaller
Z. Liu, F. Reinhardt
Introduction

Somatic Cell Score (SCS)
- indicator trait for mastitis
- $h^2 = 16 - 17\%$
- marker assisted selection

😊 Over 50 QTL for SCS reported

😢 Large confidence intervals
Objectives

- Investigate chromosomal region on BTA27 affecting SCS:
 - ↑ marker density
 - ↑ number of families
 - linkage disequilibrium

- Identify haplotypes associated with increases or decreases in SCS
Experimental Design

Pedigree

– GDD (6 families)
– 492 sires → 492 DYD for SCS
– 4,622 animals

Linkage Map

– 19 Microsatellites (~95 SNP) spanning 33.8 cM
– 6.84 alleles / marker
– Marker interval: 1.78 cM
– Putative QTL at midpoint of every marker interval
Observations for sire i (DYD for SCS)

$$y_i = X\beta + Zu + Wv + e$$

- **$\beta_{(k \times 1)}$**
 - Fixed Average
 - Random polygenic effects which have nothing to do with the QTL
- **$u_{(n \times 1)}$**
 - Random gametic (QTL) effects
- **$v_{(\text{gam} \times 1)}$**
 - Random residual
- **$X_{(m \times k)}Z_{(m \times n)}W_{(m \times \text{gam})}$**
 - Design matrices
Analysis

Restricted log likelihood ratio test statistic for all QTL positions (\(pos=1-18\)):

\[
RLRT^{Pos} = -2 \left[\ln(L_0) - \ln(L_1^{Pos}) \right]
\]

\[
\begin{align*}
L_0 & \quad \Rightarrow \quad y_i = X\beta + Zu + e \\
L_1^{Pos} & \quad \Rightarrow \quad y_i = X\beta + Zu + Wv + e
\end{align*}
\]
Analysis

- Pedigree
- Marker Positions
- Genotypes

- Pedigree
- Phenotypes

- ASReml
 \[y_i = X\beta + Zu + Wv + e \]

- Allele Frequencies
- Transmitting Probabilities

- Allele Frequencies
- Marker Positions

BTA27

Graph showing likelihood quotients for different genotypes and positions in cM.
Analysis of Haplotype Effects

Estimated Effect on SCS DYD

Christine Baes

Haplotype
Analysis of Haplotype Effects

Sum of Absolute Haplotype Estimates / Standard Error
Analysis of Haplotype Effects

Difference in Absolute Haplotype Estimates / Standard Error
Summary

- Chromosomal region on BTA27 affecting udder health further investigated
- Sharper curves and higher peaks
- Specific haplotypes identified
- Basis for comparative sequencing
Financial support from the EAAP and the FUGATO M.A.S.-Net project is gratefully acknowledged!!!
Analysis

Pedigree
Marker Positions
Genotypes

- Allele Frequencies
- Transmitting Probabilities

Allele Frequencies
Marker Positions

ASReml
\[y_i = X\beta + Zu + Wv + e \]

\[G \& G^{-1} \]

BTA27

Position in cM

Likelihood Quotient

LA
LD
LA + LD

0 5 10 15 20 25 30 35
0 1 2 3 4 5 6 7 8 9 10 11 12
Analysis: 2-QTL Model

<table>
<thead>
<tr>
<th>Position in cM</th>
<th>Pos1</th>
<th>Pos2</th>
<th>LogL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>4.34</td>
<td>10.78</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>12.16</td>
<td>10.62</td>
<td></td>
</tr>
<tr>
<td>4.34</td>
<td>12.16</td>
<td>10.70</td>
<td></td>
</tr>
<tr>
<td>4.34</td>
<td>20.20</td>
<td>10.08</td>
<td></td>
</tr>
</tbody>
</table>

Christine Baes