EFFECT OF DIETARY ENERGY LEVEL ON FOLLICLE AND OOCYTE QUALITY DURING POST-PARTUM PERIOD IN DAIRY COWS

M. Räty¹, M. Mikkola², I. Dufort³, C. Gravel³, N. Tammiranta¹, J. Taponen², P. Mäntysaari¹, E. Ketoja¹, M-A. Sirard³ and J. Peippo¹

¹MTT Agrifood Research Finland, ET Building, FIN-31600 Jokioinen, Finland, ²University of Helsinki, Paroninkuja, FIN-04920 Saarentaus, Finland, ³Laval University, Pavillon Paul-Comtois, Quebec G1V 0A6, Canada

INTRODUCTION

• Nutritional status is one of the major factors affecting reproductive performance in dairy cows
• Post-partum negative energy balance affects quality of oocytes, one of the key factors for subsequent embryo quality and viability
• The aim of this study was to investigate the effects of energy-restricted diet on the quality of cumulus-oocyte complex (COC) during early postpartum period, and to find indicator genes specific for energy deprivation

MATERIALS AND METHODS

Low energy diet (6 animals) → Cumulus-oocyte complex (COC) collection with OPU after parturition → Control diet meeting the energy requirements (6 animals)

Oocytes and cumulus cells selected to be good representatives of feeding group (4 donors/group)

Total RNA extraction → Suppressive subtractive hybridization (SSH)

cDNA library from oocytes enriched with genes associated with low energy diet → cDNA library from cumulus cells enriched with genes associated with low energy diet

Microarray → Selection of candidate genes for oocytes and cumulus cells → QPCR

RESULTS

Energy balance

Week post parturition

Low energy vs. Control

Figure 1. Weekly post partum energy balance in low energy and control groups.

Figure 2. Classification of low energy specific genes into 15 functional categories. Numbers in parenthesis indicate total number of genes.

Table 1. Expression ratios of three selected candidate genes for oocytes and two for cumulus cells were calculated. None of the differences between the two feeding groups were significant.

Conclusions

• None of the selected candidate genes turned out to be true positive low energy associated genes in QPCR verifications
• Further evaluation of the both libraries is needed