Effect of terminal sire genotype, slaughter weight, and gender on growth performance and carcass traits in European-Chinese pigs.

Viguera, J.1,*, Peinado, J.1, Flamarique, F2., Alfonso, L.3

1 Imasde Agroalimentaria, S.L., Spain
 jviguera@e-imasde.com
2 Grupo AN, Spain.
3 Universidad Pública de Navarra, Spain
INTRODUCTION

✓ Youna sows (Gene+) comes from the Tai Zumu composite line.

✓ Taizumu sows has been selected on the criteria of prolificacy, no. of teats, and mothering abilities.
INTRODUCTION

- Crosses involving Meishan (Young 1995, 1998):
 - Increased reproduction.
 - Decreased growth rate, and carcass traits of piglets.
 - Increased fatness of carcasses.

- However, intramuscular, and subcutaneous fat are very important for industry of dry-cured products.
- Terminal sire genotype is the main factor which affects performance parameters and carcass traits.
- Slaughter weight could affect meat quality.
OBJECTIVE

- To evaluate the effects of terminal sire genotype, slaughter weight, and gender on performance and carcass traits in crossbreds with Youna.
MATERIALS & METHODS

There were 8 treatments in a factorial design:

- Duroc vs Pietrain.
- 105 vs 115 kg BW.
- Castrated males vs entire females.

- A total of 256 pigs of 30.9 ± 4.9 kg initial BW.
- Four replicates of eight pigs/pen per treatment.
MATERIALS & METHODS

✓ All animals received the same feed offered *ad libitum*.

✓ Measures:
 ✓ Growth, feed intake and feed conversion.
 ✓ Carcass quality:
 ✓ Carcass fatness at P2 and *Gluteus medius* muscle.
 ✓ Dressing percentage.
 ✓ Trimmed ham, shoulder and loin yield.
MATERIALS & METHODS

Statistical analyses

✓ GLM procedure of SAS.
✓ Model:
 ✓ terminal sire genotype,
 ✓ slaughter weight,
 ✓ gender,
 ✓ and their interactions.
✓ Data are presented as least square means.
RESULTS: Terminal sire genotype

- No differences in performance parameters

Carcass fatness

![Bar chart showing carcass fatness for P2 and GM with Duroc and Pietrain breeds.](image)

- **P2:**
 - Duroc: 19.5 mm
 - Pietrain: 16.5 mm
 - P < .001
 - SEM = 0.42

- **GM:**
 - Duroc: 30.0 mm
 - Pietrain: 22.0 mm
 - P < .001
 - SEM = 0.65

Legend: **DUROC** (Red) and **PIETRAIN** (Yellow)
RESULTS: Terminal sire genotype

Carcass yield

![Graph showing carcass yield comparison between DUROC and PIETRAIN breeds with statistically significant differences.]
RESULTS: Terminal sire genotype

Trimmed ham and loin yield

Ham
- DUROC: 13.0%
- PIETRAIN: 13.8%
- **P < .001**
- SEM = 0.03

Loin
- DUROC: 7.0%
- PIETRAIN: 7.2%
- **P < .001**
- SEM = 0.05
RESULTS: Slaughter weight

- No differences in performance parameters and carcass fatness

Carcass yield

%
RESULTS: Slaughter weight

Loin yield

% P< .05

SEM = 0.05

6.65
6.70
6.75
6.80
6.85
6.90
6.95

105 kg 115 kg

105 kg

115 kg

EAAP, August 2009
RESULTS: Gender

Performance parameters

- **Growth rate**
 - Females: 780 g/d
 - Castrated males: 820 g/d
 - SEM = 7.5

- **Feed intake**
 - Females: 2,450 g/d
 - Castrated males: 2,550 g/d
 - SEM = 21

P < .001
RESULTS: **Gender**

Carcass fatness

- **P2**
 - Females: 16.0 mm
 - Castrated Males: 17.0 mm
 - P < .001
 - SEM = 0.42

- **GM**
 - Females: 24.0 mm
 - Castrated Males: 26.0 mm
 - P < .001
 - SEM = 0.65

Legend: *FEMALES* *CASTRATED MALES*
RESULTS: Gender

Trimmed ham and loin yield

Ham

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>Castrated Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P < .001
SEM = 0.03

Loin

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>Castrated Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P < .001
SEM = 0.05

FEMALES CASTRATED MALES
CONCLUSIONS

• Crossbred with Duroc boars:
 - increased carcass fatness.
 - decreased carcass, ham, and loin yield.

• In consequence, the use of Duroc genotype as terminal sire improves fat deposition of pigs destined for the dry-cured industry, but decreases the yield of meat cuts.
CONCLUSIONS

- A slaughter weight of 115 kg BW:
 - increased carcass and loin yield.
- Therefore, it is interesting to increase the SW from 105 to 115 kg BW in Duroc x Youna pigs.
Acknowledgements: Financial support was provided by the Centro para el Desarrollo Tecnológico Industrial CDTI (Project IDI-20070056); Ministerio de Industria Turismo y Comercio (PROFIT Project FIT-060000-2006-52), and by the Gobierno de Navarra (Project IIP010497.RI1).
CONCLUSIONS

- Crossbred with Duroc boars:
 - increased carcass fatness.
 - decreased carcass, ham, and loin yield.
- A slaughter weight of 115 kg BW:
 - increased carcass and loin yield.