MODULATION OF THE HUMAN AGED IMMUNE RESPONSE BY DONKEY MILK INTAKE

E. Jirillo¹, A.G. D’Alessandro², L. Amati³, A. Tafaro¹, F. Jirillo¹, V. Pugliese¹, G. Martemuccii²

¹Immunology, Faculty of Medicine, University of Bari, Italy
²Department PRO.GE.SA., Faculty of Agriculture, University of Bari, Italy
³National Institute of Gastroenterology, Castellana Grotte, Bari, Italy

INTRODUCTION
Immunosenescence is characterized by a progressive decline of immune functions in age and both innate and adaptive immune responses are severely impaired (Jirillo et al., 2008; Chen et al., 2009). This physiological status increases the susceptibility of old people to infections, tumours and autoimmune diseases. (Panda et al., 2009; Chen et al., 2009). Nutrition seems to be fundamental in the mechanism of immune recovery in the elderly.

It is known that human milk contains several components having immunological activity such as s-IgA antibodies, Interferon-γ, Lactoferrin, Lysozyme, Hormones and Growth Factors which exert defensive mechanisms (Newman, 1995). It was hypothesized that donkey milk could have a beneficial effect in the immune compromised host for the inhibition of bacterial activity and prevention of atherosclerosis because of its antioxidant properties (Conte et al., 2004; D’Alessandro, 2007). A recent study on evaluation of the in vivo effects of donkey’s colostrum and milk on healthy adult blood mononuclear cells showed that colostrum induces secretion of s-IgA, while milk prevalently promoted production of IgA and release of regulatory, pro-inflammatory and anti-inflammatory cytokines. Moreover, donkey milk induces the production of nitric oxide (Tafaro et al., 2007). All this supplies a further support to use of donkey milk in prevention of disease of old people.

AIM
The aim of the study was to evaluate the effects of intake of donkey milk on serum cytokine profile in aged subjects.

SUBJECTS AND METHODS

Aged Subjects
- Number: 6 (females)
- Age: 72 - 97 years
- Characteristics: Clinically healthy (no drug assumptions)

+ Donkey Milk
1 cup (200 mL) per day for 1 month

Blood Collection

T0 BEFORE milk intake
T1 AFTER milk intake for 1 MONTH

Determination of Cytokines
- IL-12, TNF-α, IL-10, IL-6, IL-16, IL-8
- On blood serum:
 - Method: Multiplexing Assay in Cytofluorimetry
 - Flow cytometer: FACSalibur (Becton Dickinson)
 - Software: CellQuest Software
 - Kit: GBA-Analysis Software
 - GBA Human Inflammation GraphPad Prism 5.0 package

RESULTS

Cytokine IL-12
Serum levels of IL-12 were undetectable either before or after donkey milk intake. Normal values in control donors ranged between 0.0 to 28.0 pg/ml.

Cytokine IL-6
The IL-6 values were moderately high at T0 (6.7 pg/ml) and increased after donkey milk administration (23.0 pg/ml). Normal values in control donors ranged between 0.0 to 9.5 pg/ml.

Cytokine IL-10
Basal levels of IL-10 (2.2 pg/ml) resulted within a normal range. No significant increase was found after milk administration (2.3 pg/ml). Normal values in control donors ranged between 0.0 to 9.0 pg/ml.

Cytokine IL-18
Both IL-18 and TNF-α cytokines were not detected at T0, but after milk administration they slightly increased to 5.9 pg/ml and 1.0 pg/ml, respectively, reaching values within the normal ranges. Normal values in control donors were: IL-18 = 0.0 - 265.0 pg/ml; TNF-α = 0.0 - 7.0 pg/ml.

CONCLUSIONS
A critical analysis of the results leads to the conclusion that donkey milk is an enhancer of acute phase response and, in a lesser extent, of pro-inflammatory cytokines response. Taken together, these findings indicate that a regular intake of donkey milk in moderate amount (200 mL/day) is able to up-regulate the immune response in aged host.

Acknowledgement
Paper supported by Interreg IIIA Greece – Italy (2101030), Paper N. 28 and Ministry of Health,