Protein and amino acid digestibility in white-flowering faba bean and cake from cold-pressed rapeseed, linseed and hempseed in growing pigs

EAAP meeting, Heraklion 2010, session 11

Magdalena Høøk Presto#
Karin Lyberg
Jan Erik Lindberg
Dept. of Animal Nutrition and Management, SLU

Corresponding author: e-mail: Magdalena.Presto@huv.slu.se
Background

Organic animal production (EC, 1999)

- 100 % organic feed & high self-sufficiency level
- No use of:
 - Industrially produced amino acids
 - Feed ingredients originating from GMO
 - Feed ingredients treated with chemical solvents

Evaluate potential protein-rich feed resources

- Limited number of legumes and oil seeds
Background

Faba beans (Vicia faba)

- White flowered varieties is increasingly used in conventional and organic pig feed
- High protein content (~ 30%) - rich in lysine
- Protein and amino acid digestibility comparable with conventional protein feed ingredients

Previous investigations about nutrient value:
van der Poel et al., 1992; Jansman et al., 1993; Mosenthin et al., 1993; Partanen et al., 2001; Mariscal-Landín et al., 2002
Background

Cold pressed rapeseed cake (*Brassica napus*)

- Used in organic diets
 - no use of hexane when extracting oil
- High protein content - rich in threonine and sulphur-containing amino acids

Several investigations about rapeseed products but few on cold pressed cake (Schöne et al., 1998; Partanen et al., 2001)

Cold pressed linseed cake (*Linum usitatissimum*)

- Used to some extent in organic diets
- High protein content (~ 30%) – poor in lysine

Few investigations on digestibility in pigs. Some studies on piglet gut health (Jansman et al., 2007a;b)
Background

Hempseed cake (*Cannabis sativa*)

- Hempseed mainly used for fiber/seed/oil production
- Cold pressed cake - rarely used in conventional and organic animal diets
- Desirable high protein content (30-35%) & amino acid profile – nutrient value for pigs?

Previous investigations about nutrient value (other species than pig):
Hullar et al., 1999; Mustafa et al., 1999; Callaway, 2004; Silversides & Lefrançois, 2005; Hessle et al., 2008
Potential protein feed resources!

Limited available reports/data about protein and amino acid digestibility & efficient use as feed ingredient
Aim

• Descriptive investigation
• Determine the ileal apparent (IAD) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA)
 • in organically cultivated white-flowering faba beans, and cakes from hempseed, linseed and rapeseed
What/how did we do?

- Four period change-over trial with six castrated male Yorkshire pigs (22.1 kg BW)
- Surgically provided with post valve T-caecum cannulas (PVTC) (van Leeuwen et al., 1991)
- Individually housed
What/how did we do?

Dietary treatments:

Treatment diets (HC, LC, RC, F)

Experimental feed ingredients, 25-30% inclusion level
Basal feed (cornstarch, sugar, casein, premix, TiO$_2$)
Crude protein content: 170 g kg$^{-1}$ DM

Casein diet (CAS) – pre and post treatment periods
protein source: casein - to determine endogenous N & AA secretions (Høøk Presto et al., 2010)

Diets were nutritionally balanced, fed twice a day
- 4% of individual live weight until 60 kg
- 2.4 kg / pig and day after 60 kg (4% of 60 kg)
What/how did we do?

• Each experimental period 14 days
 7 days adaptation
 Faeces – sampling at days 8-11
 Ileal digesta – sampling at days 12 and 14
• 1-hour periods evenly distributed between morning and afternoon meal (8.30 am – 4.30 pm)

• TiO₂ indigestible marker for calculations of digestibility and endogenous losses of N and AA in ileal digesta
• IAD of CP and AA for protein feed ingredients
 • Corrected and accounted for contribution of casein
• SID values - corrected for basal ileal secretions of endogenous N and AA
Results

Diets:
IAD and TTAD of crude protein – no treatment effect
 \(p=0.074 \) and \(0.277 \)
IAD of amino acids – treatment effects for most AA
 • in general lower IAD for RC diet

Feed ingredients:
IAD of and SID of crude protein – treatment effect
 \(p=0.029 \) and \(0.047 \). Lower Dig. values for rapeseed cake
IAD and SID of amino acids – treatment effects for most AA
 • No specific direction
Ileal apparent and standardized digestibility (%) for feed ingredients

Hempseed cake

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>Lys</th>
<th>Thre</th>
<th>Met</th>
<th>Isoleu</th>
<th>Leu</th>
<th>Phe</th>
<th>Val</th>
<th>Arg</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAD</td>
<td></td>
</tr>
<tr>
<td>SID</td>
<td></td>
</tr>
</tbody>
</table>

0 20 40 60 80 100

12
Ileal apparent and standardized digestibility (%) for feed ingredients

Linseed cake

<table>
<thead>
<tr>
<th>CP</th>
<th>Lys</th>
<th>Thre</th>
<th>Met</th>
<th>Isoleu</th>
<th>Leu</th>
<th>Phe</th>
<th>Val</th>
<th>Arg</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

IAD | SID
Ileal apparent and standardized digestibility (%) for feed ingredients

Rapeseed cake

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>Lys</th>
<th>Thre</th>
<th>Met</th>
<th>Isoleu</th>
<th>Leu</th>
<th>Phe</th>
<th>Val</th>
<th>Arg</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAD</td>
<td></td>
</tr>
<tr>
<td>SID</td>
<td></td>
</tr>
</tbody>
</table>

0 20 40 60 80 100

CP, Lys, Thre, Met, Isoleu, Leu, Phe, Val, Arg, His

IAD, SID
Ileal apparent and standardized digestibility (%) for feed ingredients

Faba bean

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>IAD</th>
<th>SID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• The results make an useful contribution to a more efficient use of alternative protein feed ingredients
• Satisfactory digestibility of CP and AA
 • Comparable with conventional protein feed ingredients
• Investigated feed ingredients - suitable to be used in pig diets
• Additional data on nutrient value and efficient use is desirable
Thank you for your attention!

Thanks to:

Formas
(Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning)

Dept. of Animal Nutrition and Management, SLU
Dept. of Clinical Sciences, SLU