Effect of Crossbreeding on Milk Production, Udder Health and Fertility on Dutch Organic Dairy Farms

W.J. Nauta‡, Y. de Haas*, J.N. Hoorneman#, E.A.A. Smolders*, and R.F. Veerkamp*

* Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 65. NL-8200 AB Lelystad
‡ Louis Bolk Instituut. Hoofdweg 24. NL-3972 LA Driebergen
Current address: Hendrix Genetics, PO Box 114. NL-5830 AC Boxmeer
Content:

• Introduction
• Material and Methods
 – Available data
 – Analyzed traits
 – Analyzed breeds
 – Statistical analyses
• Results
 – Overall
 – Soil type
 – Barn type
• Conclusion
Introduction:

Organic dairy farming:
- 312 farms in Netherlands
- 55 milking cows/farm
- Still ~ 65% HF blood
- ~ 6650 kg milk/ha
- ~ 6200 kg milk/cow
- 25% natural mating
Introduction:

Organic dairy farming

– Holsteins, Dutch breeds, foreign breeds and crosses

– Restrictions:
 • No fertilizer, less concentrates and AB
 • Cows on the pasture

– High variation in management
 • More depending on farm environment
 • Less possibilities to steer
Breeds:

Holstein Frisian

Dutch Friesian
Breeds:

Brown Swiss

Jersey
Breeds:

MRIJ

Blaarkop
Breeds and crosses:

- 22% HF
- 22% MRIJ
- 21% FH
- 10% GB
- 7% BS
- 7% Mon
- 7% FV
- 5% ZRb
- 4% HFxNL
- 4% HFxForB
- 3% MRIJ cross
- 2% Other
- 1% Jersey
Aim:

- The aim of this study was
 - to analyze an unique dataset with 24 different breeds and their crosses
 - to estimate the effects of crossbreeding for milk production, udder health and fertility
 - to investigate if these effects differ according to soil type and housing systems.
Available data:

- 113 Dutch organic farms
- January 1st, 2003 - February 1st, 2009
- 33,788 lactations on 15,015 individual cows (average yearly herd size of 50 cows/farm)
- 28% primiparous cows,
 23% 2nd lactation cows,
 49% 3rd or more lactation cows
Analyzed traits:

- Animal data
- Traits
 - Milk production
 - Fat and protein corrected milk yield
 - Fertility
 - Udder health
- Farm data
 - Soil type (sand vs. no sand)
 - Housing (cubicles vs. no cubicles)
Analysed breeds:

- 24 breeds in total
- 6 breeds most presented:
 - Holstein-Friesian (HF),
 - Brown Swiss (BS),
 - Dutch Friesian (DF),
 - Groningen White Headed (GWH),
 - Jersey (J),
 - Meuse-Rhine-Yssel (MRY)
Statistical analyses:

- Regression on all breed fractions, expected heterosis and recombination with ASREML
- Least square means for purebred Holsteins and crosses (F1 and backcross) with 5 other breeds
- \[Y = \mu + \text{fixed effects} + \sum b_i \times \text{breed}_i + b_2 \times \text{heterosis} + b_3 \times \text{recombination} + \text{animal} + \text{error} \]
Results overall:

• Average milk production traits:
 – 6858 kg in 305 days
 – 300 kg fat and 235 kg protein

• Average functional traits:
 – Calving interval was 411 days
 – The lactation-average SCS was 1730 (~266,000 cells/ml)
Results; regression coefficients:

- Regression coefficients:
 - Heterosis had a favorable effect ($p<0.10$) on milk, FPCM and CI, but unfavorable for SCS
 - Recombination was unfavorable for the milk traits, but favorable for the functional traits
 - Regression coefficients differed per breed
Predicted milk production per % of HF genes:

- Brown Swiss
- Dutch Friesian
- White Headed
- Jersey
- MRY
Predicted calving interval per % of HF genes

- Brown Swiss
- Dutch Friesian
- White Headed
Results regression soil type:

<table>
<thead>
<tr>
<th></th>
<th>Milk</th>
<th>FPCM</th>
<th>SCS</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sand</td>
<td>No S</td>
<td>Sand</td>
<td>No S</td>
</tr>
<tr>
<td>Heterosis</td>
<td>104.9</td>
<td>123.9</td>
<td>124.5</td>
<td>134.3</td>
</tr>
<tr>
<td>Recombination</td>
<td>-526.6</td>
<td>-516.5</td>
<td>-312.7</td>
<td>-420.2</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>-6.2*</td>
<td>-75.0</td>
<td>-7.2*</td>
<td>-50.7</td>
</tr>
<tr>
<td>Dutch Friesian</td>
<td>-28.3</td>
<td>-25.2</td>
<td>-14.8</td>
<td>-39.3</td>
</tr>
<tr>
<td>White Headed</td>
<td>-113.9</td>
<td>-161.8</td>
<td>-137.4</td>
<td>-160.7</td>
</tr>
<tr>
<td>Holstein</td>
<td>114.7*</td>
<td>79.3</td>
<td>46.5*</td>
<td>74.0</td>
</tr>
<tr>
<td>Jersey</td>
<td>-62.3*</td>
<td>-135.7</td>
<td>-14.3</td>
<td>-59.2</td>
</tr>
<tr>
<td>MRY</td>
<td>-7.0*</td>
<td>-66.6</td>
<td>-20.4*</td>
<td>-59.5</td>
</tr>
</tbody>
</table>

* P-value < 0.10
Results regression barn type:

<table>
<thead>
<tr>
<th></th>
<th>Milk</th>
<th>FPCM</th>
<th>SCS</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cub</td>
<td>No C</td>
<td>Cub</td>
<td>No C</td>
</tr>
<tr>
<td>Heterosis</td>
<td>69.0</td>
<td>183.5</td>
<td>121.5</td>
<td>199.7</td>
</tr>
<tr>
<td>Recombination</td>
<td>-583.9</td>
<td>-365.5</td>
<td>-434.9</td>
<td>-267.7</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>-43.7</td>
<td>-88.7</td>
<td>-17.7</td>
<td>78.6</td>
</tr>
<tr>
<td>Dutch Friesian</td>
<td>1.6</td>
<td>-120.1</td>
<td>-5.3</td>
<td>-105.5</td>
</tr>
<tr>
<td>White Headed</td>
<td>-155.5*</td>
<td>-142.9</td>
<td>-162.9</td>
<td>-139.8</td>
</tr>
<tr>
<td>Holstein</td>
<td>107.0*</td>
<td>54.1</td>
<td>97.0*</td>
<td>49.9</td>
</tr>
<tr>
<td>Jersey</td>
<td>-83.6</td>
<td>-149.2</td>
<td>-20.1</td>
<td>-86.5</td>
</tr>
<tr>
<td>MRY</td>
<td>-21.5*</td>
<td>-86.7</td>
<td>-24.3*</td>
<td>-90.5</td>
</tr>
</tbody>
</table>

* P-value < 0.10
Conclusions:

• Breeds: large differences between breeds
• Crossbreeding HF with other breeds:
 – Decreases milk production and FPCM
 – Improves fertility
 – Improves udder health in certain crosses

• Soil type and housing affected regression coefficients on breed components

→ It is important to choose the right breed or cross breed for the divers organic farm systems
Thanks for your attention,

Any questions?

Contact:

w.nauta@louisbolk.nl

yvette.dehaas@wur.nl