Runs of homozygosity and levels of inbreeding in cattle breeds

Ferenčaković M., Hamzić E., Fürst C., Schwarzenbacher H., Solberg T., Curik I., Gredler B., Sölkner J.

EAAP – 62nd Annual Meeting, Stavanger 2011
In this study we used:

- Brown Swiss cattle, 463 bulls
- Norwegian red cattle, 498 bulls
- Simmental cattle, 502 bulls
- Tyrol Grey, 215 bulls
...on which we tried to

- predict levels of inbreeding
- compare levels of autozygosity
- explain their inbreeding history
Genomic inbreeding coefficient

Level of homozygosity

\[F_{\text{hom}} : \frac{H_e - H_o}{H_e} \]

Runs of homozygosity

\[F_{\text{ROH}_k} : \frac{\sum_k \text{length (ROH}_k)}{L} \]
Runs of homozygosity (ROH)

Observable inbreeding?
GENERATIONS & CROSSING OVERS
Illumina Bovine SNP50TM Beadchip

We exclude:
- SNP with gc_score < 0.2
- SNP with MAF < 0.01
- SNP with >0.05 of missing genotypes
- animals > 0.05 of missing genotypes
Pedigree data (6.46 – 9.02 CGE)

36273 SNP

ROH lengths (k):

PEDIG

PLINK

PLINK

SAS

F_{pedT} & F_{ped5}

F_{hom}

Five ROH lengths (k):

>1Mb, >2Mb, >4Mb, >8Mb, >16Mb

F_{ROH1}, F_{ROH2}, F_{ROH4}, F_{ROH8}, F_{ROH16}
What are inbreeding levels?

<table>
<thead>
<tr>
<th></th>
<th>F_{pedT}</th>
<th>F_{ped5}</th>
<th>F_{ROH8}</th>
<th>F_{ROH16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown Swiss</td>
<td>4.1 (2.2)</td>
<td>2.1 (1.8)</td>
<td>6.6 (3.1)</td>
<td>3.3 (2.4)</td>
</tr>
<tr>
<td>Simmental</td>
<td>1.4 (1.3)</td>
<td>0.9 (1.2)</td>
<td>1.6 (1.6)</td>
<td>0.8 (1.2)</td>
</tr>
<tr>
<td>Norwegian Red</td>
<td>2.1 (1.4)</td>
<td>1.0 (1.2)</td>
<td>3.3 (2.7)</td>
<td>1.5 (1.6)</td>
</tr>
<tr>
<td>Tyrol Grey</td>
<td>2.4 (2.2)</td>
<td>1.6 (2.0)</td>
<td>3.0 (2.6)</td>
<td>1.6 (2.0)</td>
</tr>
<tr>
<td>Mean(SD) %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
...but ancient inbreeding?

<table>
<thead>
<tr>
<th></th>
<th>F_{ROH1}</th>
<th>F_{ROH2}</th>
<th>F_{ROH4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown Swiss</td>
<td>14.2 (3.6)</td>
<td>11.5 (3.6)</td>
<td>9.3 (3.5)</td>
</tr>
<tr>
<td></td>
<td>8.5 (2.0)</td>
<td>5.2 (1.9)</td>
<td>3.0 (1.7)</td>
</tr>
<tr>
<td></td>
<td>9.6 (2.5)</td>
<td>7.2 (2.5)</td>
<td>5.3 (2.4)</td>
</tr>
<tr>
<td></td>
<td>7.8 (2.7)</td>
<td>5.3 (2.7)</td>
<td>4.1 (2.7)</td>
</tr>
</tbody>
</table>

Brown Swiss Simmental Norwegian Red Tyrol Grey Mean(SD) %
Correlations?

<table>
<thead>
<tr>
<th></th>
<th>$F_{\text{ped}T}$</th>
<th>$F_{\text{ped}5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\text{ped}5}$</td>
<td>0.94 – 0.98</td>
<td>–</td>
</tr>
<tr>
<td>$F_{\text{ROH}1}$</td>
<td>0.60 – 0.71</td>
<td>0.49 – 0.70</td>
</tr>
<tr>
<td>$F_{\text{ROH}2}$</td>
<td>0.60 – 0.71</td>
<td>0.49 – 0.70</td>
</tr>
<tr>
<td>$F_{\text{ROH}4}$</td>
<td>0.62 – 0.72</td>
<td>0.52 – 0.72</td>
</tr>
<tr>
<td>$F_{\text{ROH}8}$</td>
<td>0.61 – 0.71</td>
<td>0.53 – 0.71</td>
</tr>
<tr>
<td>$F_{\text{ROH}16}$</td>
<td>0.51 – 0.69</td>
<td>0.50 – 0.71</td>
</tr>
</tbody>
</table>

Brown Swiss Norwegian Red Simmental Tyrol Grey
...level of homozygosity?

Inbreeding

<table>
<thead>
<tr>
<th>Breed</th>
<th>(F_{\text{hom}}) Mean(SD)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown Swiss</td>
<td>13.8 (3.6)</td>
</tr>
<tr>
<td>Simmental</td>
<td>6.6 (2.7)</td>
</tr>
<tr>
<td>Norwegian Red</td>
<td>6.6 (2.6)</td>
</tr>
<tr>
<td>Tyrol Grey</td>
<td>7.2 (3.6)</td>
</tr>
</tbody>
</table>

Correlations

\(F_{\text{ped}T} \)	0.56 – 0.63
\(F_{\text{ped}5} \)	0.49 – 0.64
\(F_{\text{ROH}1} \)	0.84 – 0.93
\(F_{\text{ROH}2} \)	0.80 – 0.92
\(F_{\text{ROH}4} \)	0.76 – 0.91
\(F_{\text{ROH}8} \)	0.69 – 0.87
\(F_{\text{ROH}16} \)	0.61 – 0.81
ROH structure

The graph shows the relationship between the total length of ROH (>
1Mb) and the number of ROH (> 1Mb). The data points are differentiated
by color, with Brown Swiss in black and Simmental in red.

- Y-axis: number of ROH (> 1Mb)
- X-axis: total length of ROH (> 1Mb)
Conclusions about ROH & F_{ROH}

- Useful especially if pedigree is missing or incorrect
- Demonstrated as optimal way for identification of ancient inbreeding in humans (Keller et al. 2011)
- ROH give information about level of inbreeding and its age
- Observational approach: most likely provide more accurate information than probabilistic approaches
We are very grateful to owners of the genotype data for providing them:

Geno – breeding organization for Norwegian Red
AGOEF – Association of Austrian Fleckvieh Breeders
ArGe Braunvieh
ArGe Grauvieh
Thank you for your attention

EAAP – 62nd Annual Meeting, Stavanger 2011