Comparison of estimation models with a data set of limited number of animals but intensive recording

Takuro Oikawa¹, Yo Koga¹, Takuji Hirayama¹, Tahmina Munim², Takayuki Ibi²
¹Faculty of Agriculture, University of the Ryukyus
²Graduate School of Natural Science and Technology, Okayama University

〈Background〉
Analysis of random regression model (RRM) was firstly introduced to field of animal breeding as a model to investigate genetics of test day records of dairy cattle. Since then, RRM has been applied to longitudinal records related to animal production.

〈Objective〉
Objective of this study was to investigate a possibility of applying RRM to a data set of limited number of animals having intensively measured records and compare results of different estimation models.

〈Data〉
The data set included 10295 body weights (BW) of 887 calves measured from 1975 to 2008 at an experimental station of Okayama University. Calves were weaned at 2 or 3 mo of age. Selected heifers were dehorned soon after weaning. Culled heifers and all steers of 8 to 10 mo of age were shipped to a local calf market.

〈Analysis〉
Variance components of body weight were estimated by reml using vce602. Statistical model including fixed effects; 408 contemporary groups (year-season-sex), age of calves as a covariate and random effects; animal’s direct genetic effect (DGE), random residuals and either of maternal genetic effect (MG) or permanent environmental effect (PE).

〈RR Model〉
\[y_{ij} = F + \sum_{k=1}^{5} \beta_{ik} x_{ij} + \sum_{k=1}^{5} \sum_{m=1}^{3} \gamma_{ikm} x_{ij} + \sum_{k=1}^{5} \delta_{ikm} x_{ij} + e_{ij} \]

where \(F \) are the fixed effects in the model; \(\phi_{im} \) \(t_{ij} \) are the covariates as a function of age with \(t_{ij} \), the \(j \)th age of animal \(i \) standardized to the range –1 to 1, and with \(\phi_{im} \), the \(m \)th orthogonal Legendre polynomial for \(n \) the order of fit (with \(\phi_{im} \) evaluated for \(t_{ij} \), there will be \(k_b \) coefficients for each age); \(\beta_{im} \) is the \(m \)th fixed regression coefficient; \(\alpha_{im} \) and \(\gamma_{im} \) are the \(m \)th DGE, MG and PE random regression coefficients for animal \(i \); \(\kappa_{im} \) and \(k_p \) are orders of fit (set to be 3 according to a preliminary result) for the DGE, MG and PE; and \(E_{ij} \) is the effect of random error. Either of MG or PE were included in RRM.

〈Results〉
Figure 1. Heritabilities of DGE and MG by bivariate model (BW of 3 mo and others).

Figure 2. Heritabilities of DGE and MG (a) and genetic correlations between them (b) by RRM.

Figure 3. Heritabilities of DGE and proportions of PE variance by RRM with DGE and PE.

〈Discussion〉
Heritability in Fig.1 showed small upward trend for DGE and downward trend for MG. Genetic correlations were varied (not in Results). Heritabilities in RRM estimates in Fig. 2 were more stable than the above results, however, range of them were large, probably due to homogeneous residual variance. Heritability of MG showed an apparent peak at 4 mo. Proportion of PE variance in Fig. 3 had upward trend till 4 mo, then constant values afterwards. Heritabilities of DGE showed L-shaped increase, which suggested influence of MG variance.