Detection of early lactation ketosis by rumination and other sensors

Machteld Steensels, Ephraim Maltz, Aharon Antler, Claudia Bahr, Daniel Berckmans, Ilan Halachmi

63rd Annual Meeting of the EAAP
Bratislava - August 29, 2012
Acknowledgements

• EAAP
• Farmers
• Veterinarians
• Doron Bar, Roni Meir (SCR Engineers Ltd. Israel)
• Contribution no. 459-4426-10 and 459-4369-10 Israeli Agricultural Ministry Chief Scientist Fund
Outline

• Introduction
• Hypothesis
• Objectives
• Material & Methods
• Results
 ▫ Basic statistics
 ▫ Model Development - Calibration – Validation
• Discussion
• Conclusion
Introduction

- **Past**: livestock management decisions based only on human observation
Introduction

- **Last decades**: dairy farming → intensive production systems
Introduction

- Dairy farming in Israel
 - Israeli-Holstein
 - ~ 11500 kg milk/cow/year
Introduction

• Cow health
 ▫ All cows: Routine check 5 to 12 days after calving
 ▫ One main vet organization: 99 % cows
 ▫ Records collected on national level

• Many sensors
Introduction

• Large quantity of data signals in herd management software

• Many sensors - specific purposes
 → Give sensor data biological meaning

• GAP: combination sensor data hardly explored
Introduction

• Ketosis
 ▫ Early lactation
 ▫ 15 % of the cows in Israel

• Costs:
 ▫ Veterinarian
 ▫ Treatment
 ▫ Lost milk yield
 ▫ Labour
Hypothesis

• Ketosis$=\Delta$ behaviour and performance

• Sensors
 ▫ Ruminating time
 ▫ Neck activity
 ▫ Milk yield
Objectives

• Identifying post-calving ketosis by:
 ▫ Behavioural data (ruminating time, neck activity)
 ▫ Performance data (milk yield)

• Build model that can be applied in commercial farms as part of the herd management software
Material & Methods

• Sensor: HR-Tag (SCR Engineers Ltd)
 ▫ Cow Identification
 ▫ Ruminating time (min/2h)
 ▫ Neck activity (activity index/2h)
Material & Methods

• Data collection:
 ~ 2000 cows – commercial herds
 ▫ Big kibbutz farm: 1100 cows
 ▫ 4 smaller kibbutz farms: ca. 300 cows/farm

• Daily data – 2h data

• Start in November 2010
Material & Methods

• Golden standard: veterinarian
 ▫ Routine check 5 to 12 days after calving

• Procedure
 ▫ Ketosis → Ketostix test (measuring AcAc in urine)

• Treatment
 ▫ Drenching with propylene glycol
 ▫ Intravenous infusion in severe cases
Material & Methods

- Based on health reports and lactation curves:
 - Healthy cows
 - Ketotic cows
 - Excluded:
 - Cows with other health problems (metritis, mastitis, lameness, ...)
 - Cows without Ketostix test results
 - Cows with unexplained drop in milk yield
Preliminary Results - Rumination

Healthy: 45 cows
Ketotic: 45 cows
Preliminary Results - Neck Activity

Activity (activity index / 2h)

Healthy: 45 cows

Ketotic: 45 cows
Preliminary Results - Milk yield

Healthy: 45 cows

Ketotic: 45 cows
Objectives

- Identifying post-calving ketosis by:
 - Behavioural data (ruminating time, neck activity)
 - Performance data (milk yield)

- Build model that can be applied in commercial farms as part of the herd management software
Model: Development

• Stepwise logistic regression model
 ▫ Probability of being sick
 • \(f(z) = (1 + e^{-z})^{-1} \)
 • \(z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k \)
 ▫ 2 model outcomes:
 • 0 – Healthy
 • 1 – Ketotic

• Variables: Ruminating Time, Neck Activity and Milk Yield
Model: Calibration

- 45 healthy and 45 ketotic cows

<table>
<thead>
<tr>
<th>Detected value</th>
<th>Reference value</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketotic</td>
<td>37</td>
<td>5</td>
</tr>
<tr>
<td>Healthy</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>
Model: Validation

- Ketotic: 89 cows
- Healthy: 144 cows
Model: Validation

- **144 healthy and 89 ketotic cows**

<table>
<thead>
<tr>
<th>Days to diagnosis</th>
<th>Detected value</th>
<th>Reference value</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sick</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>Ketotic</td>
<td>57</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Healthy</td>
<td>19</td>
<td>Healthy</td>
</tr>
<tr>
<td>-1</td>
<td>Ketotic</td>
<td>68</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Healthy</td>
<td>21</td>
<td>Healthy</td>
</tr>
<tr>
<td>0</td>
<td>Ketotic</td>
<td>64</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Healthy</td>
<td>25</td>
<td>Healthy</td>
</tr>
</tbody>
</table>
Model: Validation

<table>
<thead>
<tr>
<th>Farm</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83 %</td>
</tr>
<tr>
<td>2</td>
<td>70 %</td>
</tr>
<tr>
<td>3</td>
<td>91 %</td>
</tr>
<tr>
<td>4</td>
<td>67 %</td>
</tr>
<tr>
<td>5</td>
<td>77 %</td>
</tr>
</tbody>
</table>

![Map with numbered locations](image)
Discussion

• Existing farm data
• Exact timing of disease is unsure
• After diagnosis and treatment: recovery

• Misclassified cases ~
 ▫ Subclinical ketosis (53 %)
 ▫ Environmental conditions
 ▫ Management practices
 ▫ …

• Improvements
 ▫ Other types of models (survival models, tree based models)
 ▫ Other sensors
Conclusion

• Ketosis \Rightarrow behaviour and performance

• A model can be build

• Practical application: herd management software \rightarrow automatic list of cows at risk for ketosis

Thank you!

machteld@volcani.agri.gov.il