The influence of live yeast on piglet growth performance, and nutrient utilization

R. Lizardo, A. Perez-Vendrell, R. D'Inca,
E. Auclair, J. Brufau

1IRTA – Monogastric Nutrition, Ctra Reus–Morell, Km 3.8 Constànti, Spain
2LFA - Lesaffre Feed Additives; Marcq-en-Baroeul, France
Introduction

- Piglet weaning at 3-4 weeks
- Stress and multiple handicaps (emotional, environmental, sanitary, immunity, nutritional, etc.)
- Post-weaning syndrome (low feed intake, body reserves depletion, growth reduction, diarrhoea, sensibility to pathogens, morbidity, mortality, etc.)
- Ban of utilisation of AGP since January 2006
- Research of AGP alternatives to overcome PW syndrome
Introduction

Saccharomyces cerevisiae Sc 47 yeasts or some of their extracts could be one alternative thanks to:

- Improvement of growth performance (Jurgens et al., 1997; van Heugten et al., 2003; Lizardo et al., 2009, 2012)
- Improvement of nutrient utilization (Lizardo et al., 2009, 2012)
- Maintenance of digestive microflora and exclusion of potential pathogenic bacteria (Jann, 1981; van Heugten et al., 2003)
- Stimulation of immunity (Davis et al., 2004)
- Reduction of morbidity and mortality

However, some other studies did not show any benefit

(Kornegay et al., 1995; Le Mieux et al., 2003)
Objectives

Study the inclusion level of live yeast *Saccharomyces cerevisiae Sc47* (Actisaf®, LFA, France) in diets for piglets after weaning and observe their influence on:

- Growth performance
- Feed efficacy
- Nutrient digestibility
Material & Methods (1)

Performance trial:

- 4 experimental treatments

 T1: Control diet

 T2: 0.1g/kg of live yeast (5x10^8 cfu/kg feed)

 T3: 0.5g/kg of live yeast (2.5x10^9 cfu/kg feed)

 T4: 1.0g/kg of live yeast (5x10^9 cfu/kg feed)

- 128 LR*Du male piglets, 3-4 weeks, 6.8 kg BW

- 8 blocks BW, 32 pens, 4 pigs / pen

- BW, ADWG, ADFI, FCR

63rd EAAP, August 27th – 31th, 2012; Bratislava, Slovakia
Material & Methods (2)

<table>
<thead>
<tr>
<th>Diets (mash)</th>
<th>Pre-starter</th>
<th>Starter</th>
<th>Pre-Grower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereals (corn, barley, wheat)</td>
<td>44.0</td>
<td>54.0</td>
<td>59.0</td>
</tr>
<tr>
<td>SBM 48, full-fat soya</td>
<td>28.3</td>
<td>22.0</td>
<td>25.2</td>
</tr>
<tr>
<td>Wheat bran, SBeet pulp</td>
<td>5.0</td>
<td>6.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Chemical analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME, Mcal/kg</td>
<td>3.30</td>
<td>3.28</td>
<td>3.25</td>
</tr>
<tr>
<td>LYS std. dig., %</td>
<td>1.33</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>CP, %</td>
<td>20.7</td>
<td>18.4</td>
<td>19.5</td>
</tr>
<tr>
<td>NDF, %</td>
<td>10.8</td>
<td>12.0</td>
<td>14.0</td>
</tr>
<tr>
<td>P dig., %</td>
<td>4.2</td>
<td>4.0</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Material & Methods (3)

Digestibility trial:

- The same 4 treatments
- Feeds with 1% celite (HCl-insoluble ash)
- Fresh faeces collection per pen
- 3-d adaptation and 2-d collection
- Lab analysis of feeds and faeces nutrient contents
 (DM, CP, GE, Fat, ash, CF, NDF, ADF, ADL, HCl-insoluble ash)
Results: Overall growth performance

ADWG

\[P = 0.18 \]

<table>
<thead>
<tr>
<th>Yeast Level</th>
<th>Control</th>
<th>0.1g/kg Yeast</th>
<th>0.5g/kg Yeast</th>
<th>1.0g/kg Yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liveweight, g/d</td>
<td>448</td>
<td>439</td>
<td>430</td>
<td>466</td>
</tr>
</tbody>
</table>

Final liveweight

\[P = 0.17 \]

<table>
<thead>
<tr>
<th>Yeast Level</th>
<th>Control</th>
<th>0.1g/kg Yeast</th>
<th>0.5g/kg Yeast</th>
<th>1.0g/kg Yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liveweight, kg</td>
<td>27.96</td>
<td>27.50</td>
<td>27.06</td>
<td>28.78</td>
</tr>
</tbody>
</table>
Results: Overall feed efficacy

ADFI

- **NS**

FCR

- \(P = 0.02 \)

63rd EAAP, August 27th – 31th, 2012; Bratislava, Slovakia
Results: Faecal digestibility

Dry matter

- DM digestibility: $p = 0.012$

Energy

- GE digestibility: $p = 0.018$

<table>
<thead>
<tr>
<th>Yeast</th>
<th>Control</th>
<th>0.1g/kg Yeast</th>
<th>0.5g/kg Yeast</th>
<th>1.0g/kg Yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>81.2</td>
<td>78.9</td>
<td>82.3</td>
<td>82.3</td>
</tr>
<tr>
<td>GE</td>
<td>80.7</td>
<td>78.3</td>
<td>81.6</td>
<td>81.7</td>
</tr>
</tbody>
</table>

63rd EAAP, August 27th – 31th, 2012; Bratislava, Slovakia
Results: Faecal digestibility
(contrast T_1 vs T_4)

P<0.10
ns
ns

Digestibility, %

Control
Live yeast

Dry matter
Energy
Nitrogen
Results: Faecal digestibility (contrast T1 vs T4)

- CF: P<0.05
- NDF: P<0.01
- Hemicell: P<0.05
Conclusion

Inclusion of *Saccharomyces cerevisae* Sc 47 yeasts seems to have positive effects on:

- ✔ Production parameters (ADWG, FCR)
- ✔ Fibre digestibility (DM, NDF, HmCell, CF)

In the range of CFU tested, animal response seems dose depending, and 5×10^9 cfu/kg of feed is the best dosage.

Those results agree with others obtained previously, therefore, utilization of live yeast in diets for piglets after weaning can be recommended.
Thank you very much for your attention

rosil.lizardo@jreta.es