Effect of water availability in grazed paddock on milking frequency and milk yield

I. Dufrasne, E. Knapp, V. Robaye, L. Istasse, J.L. Hornick
Nutrition Unit
Animal Production Department
Faculty of Veterinary Medicine
Chemin de la Ferme, 6 B39
4000 Liège Belgium

Isabelle.dufrasne@ulg.ac.be
Introduction: AMS in Belgium and grazing

- Trend with the AMS: Release of grazing
- Grazing: natural practice, animal health, period of recovery, reduced feeding costs, appreciated by the consumers, benefit impact on the environment.
- The project:
 - prove that grazing is not inconsistent with AMS
 - optimize the system
- The aims: effects of availability of water in the paddocks on milking frequency and milk yield
Materials and methods: grazing system

48 cows on 13 paddocks (1.33 ha)
Materials and methods: milking settlement in pasture

Cows were fetched twice a day in the waiting area.

1000 liter water trough: always available near the AMS.

THE AMS was accessible 24h/24.
Materials and methods: experimental design

• **Type of paddocks:**
 - Control paddocks: with an extra individual automatic bowl
 - Test paddocks: no water available except in the trough near the AMS.

• **Cows grazed successively 3 days in control paddocks and in test paddocks**

• **Experiment during 1 month: from 15 August to 15 September**

• **Diet:** grazed grass and concentrates in the AMS
Results:

- Mean temperature during the experiment: 17°C
- Average days in milk of the cows: 211 d
- Mean distance between the AMS and the paddocks: 150 m
- Cows received 2.7 kg concentrates per day in the AMS.
Results: frequentation of the AMS

When no water was available in the paddocks:

- Milk frequency higher due to voluntary returns
- Voluntary returns twice higher, with as result, increased frequentation

<table>
<thead>
<tr>
<th>Water availability</th>
<th>Control</th>
<th>Tested</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milking frequency (n/c)</td>
<td>2,0</td>
<td>2,3</td>
<td>P<0,001</td>
</tr>
<tr>
<td>Refused milking (n/c)</td>
<td>0,44</td>
<td>0,77</td>
<td>P<0,05</td>
</tr>
<tr>
<td>Voluntary returns (n/c)</td>
<td>0,5</td>
<td>1,3</td>
<td>P<0,001</td>
</tr>
</tbody>
</table>

Voluntary returns = milkings + refused milking + milking failures – number of fetching
Results: production parameters

<table>
<thead>
<tr>
<th>Water availability</th>
<th>Control</th>
<th>Tested</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield /milking (kg/c)</td>
<td>8,9</td>
<td>7,6</td>
<td>P<0,001</td>
</tr>
<tr>
<td>Milking time /cow</td>
<td>5min 15s</td>
<td>4 min 52s</td>
<td>P<0,001</td>
</tr>
<tr>
<td>Milk yield /cow/day</td>
<td>17.8</td>
<td>18.3</td>
<td>NS</td>
</tr>
</tbody>
</table>

- Milk yield/milking higher in the control paddocks.
- No difference in milk yield
Conclusion and perspectives

• As observed in other studies, water stimulated the cows to visit the AMS

• However no differences were observed in milk yield:
 – Water intake is influenced by the diet, the climate, the days in milk, the individuals behaviour (Melin et al., 2005)
 – The weather was fresh and the DIM high in our study
 – The experiment lasted only for one month
 – The paddocks were close the AMS

• Perspectives:
 – What are the effects of temperature variations and of dry matter content in the grass?
 – How do the cows behave with hot weather and when the AMS is far away?
 – What is the limit of the system for production and welfare?
Thank you for your attention

Questions?