Matching genetic resources and breeding objectives with the constraints in tropical farming systems

INRA-URZ, Petit-Bourg, Guadeloupe; **CIRAD, UMR INTERTRYP, Montpellier, France;
‡ DG-CIRDES, Bobo-Dioulasso, Burkina Faso
Dissatisfaction in animal products coverage in the tropics
Which ways to increase livestock productivity in the tropics?

- **Import of exotic breeds:** Some success stories (in large population)... in which local breeds conservation is part of the program promoting/organising crossbreeding between Holstein and Jersey bulls and Gir Zebus and Jaffarabadi Buffalo cows

Promoting crossbreeding of N’Dama cattle with exotic dairy breeds
Which way to increase livestock productivity in the tropics?

- **Import of exotic breeds:** ... and a lot of bad experiences without any analysis of failures

Situation of local and regional breeds (FAO, 2008)

- 48% of local and regional breeds are present in Asia + Pacific, Africa + Near East, Latin America + Caribbean (among 5599 mammals and 2017 avians)

- Risk status is generally unknown (40% to 70% according to the region)

- Crosses and substitutions with transboundary breeds threaten these endogenous resources
Which ways to increase livestock productivity in the tropics?

- **Preservation and improvement of local breeds**

 In small populations,

 - Favour sustainability through balanced abilities

 - Take into account multipurpose functions of animals and systems

‡ Identify the brakes of stakeholders’ attachment to their local breeds and adapt the speech
An experiment in West Africa: The Djallonké open nucleus breeding program

National improvement program emphasizing on smallholders since 1983 in Côte d’Ivoire

- **Goal**: improvement of growth performances with a focus on the utilization and conservation of the local Djallonké breed

- **Structure**:
 - central performance evaluation station for rams (the nucleus)
 - farmer flocks of breeding ewes only (the base population)

- **Constraints taken indirectly into account**
An experiment in the caribbeans: The Guadeloupean Creole goat

A participative action between:
The farmer cooperative
The extension services
INRA researchers

A public extension policy favouring exotic imports
A 4-point approach

1. **Characterization** of farming systems and farmers' expectations in field surveys (Gau et al, 2000; Gunia, et al 2010)

2. **Identification** of the base population & **estimation** of genetic variability available (Gunia, et al 2011)

3. **Design** of the breeding goal (Gunia, et al 2013a)

4. **Optimization** of the scheme and estimation of genetic progress (Gunia, et al 2013b)

Specific evaluation tools were developed (Standard grid, standardised evaluation design for growth, resistance and resilience traits)
A balanced animal for diverse breeding systems

An original production/adaptation breeding goal

Fertility
- Live weight
- PCV
- Dressing percent
- FEC

Annual genetic progress (% of mean of the trait)

4.5% 4.5%
1.1%
0.2%
-0.1%
NUCLEUS SELECTION FLOCKS

- Creole bucks (Recognized breeder)
- Creole does (Recognized breeder)
- Creole kids
- Non selected Creole kids (50%)
- Selected Creole kids (50%)
- Turn over (upper x%)

USER FLOCKS

- Boers bucks
- Creole does (recognized breeder)
- Improved Creole bucks
- Kids
- Industrial crossbreeding
- Fattening
- Creole kids

- Butcher
- Non identified meat
- Creole meat label
In the future: prospects of genomic tools

- **GT will help characterisation of local genetic resources** (selection signature, adaptation markers or genes and adaptation mechanisms)
 - but *need global international projects* to a comprehensive evaluation of available genetic resources

- **GT may favour genetic improvement** (identification of QTL, genomic selection for diverse traits, less dependant on pedigree structure)
 - but *depends on availability of informative data* on local populations and cheaper tools

- **At the moment, GT are unaffordable for most tropical countries** (lack of technical and financial resources)
 - and may *represent an additional threat*, by increasing commercial aggressiveness of exotic breeds
Conclusions

• Participative actions
• Supported by an holistic research approach (genetics, systemic, socio-economy, vet. scie...)
 - > to really match genetic resources and breeding objectives with the constraints,
 - > and increase livestock productivity and multifunctionality in tropical farming systems

Thank you for your attention!