Supporting crop-livestock farmers in redesigning their production systems: The CLIFS approach

Designing and testing a support approach dedicated to crop-livestock farmers

✓ Focus on farm projects (short- and mid-term)
 - Strategic orientations (which activities?)
 - Entreprise sizing (crops, herd)
 - Selection of techniques to be implemented (including technological innovations)

✓ Based on the comparison between prospective scenarios (what if?)

✓ Using a generic simulation tool called CLIFS (Crop-Livestock Farm Simulator)
 - Representation of flows between crop and herd entreprises
 - Structure and operation understandable by farmers
 - For use by advisers in the future
A three-stage support process

Base scenario = modelling the current situation

Benchmark scenario

Alternative scenarios

Current practices

Farmer’s evaluation

Farmer

Researcher / Advisor

Production project

Suggestions of technical and organizational changes
CLIFS structure

Parameters
- Feed characteristics
- Animal type and growth requirements
- Crop characteristics
- Input characteristics

(Same values for a range of farms at regional level)

Inputs
- Lactation curve
- Reproduction scheduling
- Ruminant female diet
- Fatten ruminants
- Growing ruminants
- Pork and poultry
- Manure production
- Family structure
- Cropping pattern
- Technical practices & yields
 - Hay - Silage
 - Input costs
 - Sale prices

(Farm data)

Calculations

Outputs
- Staple/marketed crop balance
- Forage balance
- Hay-Silage stocks balance
- Crop by-products balance
- Manure balance
- Economic results

(Farm data)
Production de Lait liée à la Ration 1

Pour la reproductrice "moyenne"

<table>
<thead>
<tr>
<th></th>
<th>Janvier</th>
<th>Février</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>Juin</th>
<th>Juillet</th>
<th>Août</th>
<th>Septembre</th>
<th>Octobre</th>
<th>Novembre</th>
<th>Décembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachiaria ruziizensis</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Pennisetum kizuki</td>
<td>5.0</td>
</tr>
<tr>
<td>Fourrages</td>
<td>3.0</td>
</tr>
<tr>
<td>Paille de riz</td>
<td>1.0</td>
</tr>
<tr>
<td>Maïs ensilage</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Attention : les calculs de production liées à la ration ne sont valables que pour les vaches laitières

Concentrés

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drêche du bière</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Productions Lait

<table>
<thead>
<tr>
<th></th>
<th>Janvier</th>
<th>Février</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>Juin</th>
<th>Juillet</th>
<th>Août</th>
<th>Septembre</th>
<th>Octobre</th>
<th>Novembre</th>
<th>Décembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>% saturation fourrages</td>
<td>116</td>
<td>118</td>
<td>113</td>
<td>89</td>
<td>89</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>89</td>
<td>85</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Production 'Energie'</td>
<td>142</td>
<td>121</td>
<td>151</td>
<td>88</td>
<td>77</td>
<td>116</td>
<td>104</td>
<td>89</td>
<td>77</td>
<td>110</td>
<td>171</td>
<td>159</td>
</tr>
<tr>
<td>Production 'PDI'</td>
<td>220</td>
<td>197</td>
<td>225</td>
<td>173</td>
<td>168</td>
<td>219</td>
<td>196</td>
<td>173</td>
<td>168</td>
<td>201</td>
<td>266</td>
<td>243</td>
</tr>
<tr>
<td>Production 'PDIN'</td>
<td>240</td>
<td>220</td>
<td>245</td>
<td>178</td>
<td>172</td>
<td>218</td>
<td>197</td>
<td>178</td>
<td>172</td>
<td>203</td>
<td>281</td>
<td>260</td>
</tr>
<tr>
<td>Production 'Ration'</td>
<td>142</td>
<td>121</td>
<td>151</td>
<td>88</td>
<td>77</td>
<td>116</td>
<td>104</td>
<td>89</td>
<td>77</td>
<td>110</td>
<td>171</td>
<td>159</td>
</tr>
<tr>
<td>Production 'Objectif'</td>
<td>117</td>
<td>103</td>
<td>149</td>
<td>121</td>
<td>124</td>
<td>170</td>
<td>166</td>
<td>139</td>
<td>124</td>
<td>170</td>
<td>166</td>
<td>161</td>
</tr>
<tr>
<td>% Ration/Objectif</td>
<td>122</td>
<td>118</td>
<td>102</td>
<td>73</td>
<td>62</td>
<td>68</td>
<td>63</td>
<td>64</td>
<td>62</td>
<td>65</td>
<td>103</td>
<td>98</td>
</tr>
<tr>
<td>Production permise Lij</td>
<td>117</td>
<td>103</td>
<td>149</td>
<td>88</td>
<td>77</td>
<td>116</td>
<td>104</td>
<td>89</td>
<td>77</td>
<td>110</td>
<td>166</td>
<td>159</td>
</tr>
<tr>
<td>Lj/Lij</td>
<td>7.8</td>
<td>6.9</td>
<td>9.9</td>
<td>5.9</td>
<td>5.1</td>
<td>7.7</td>
<td>6.9</td>
<td>5.9</td>
<td>5.2</td>
<td>7.3</td>
<td>11.0</td>
<td>10.6</td>
</tr>
</tbody>
</table>
Four contexts with crop-livestock farmers

Morroco
Irrigated dairy farms
5-60 cows over 2-30 ha
Alfalfa + Silage Maize

Brazil
Rainfed dairy farms
10-30 cows over 15-30 ha
Pasture + Sugarcane/Silage

Madagascar
Irrigated + Rainfed dairy farms
1-3 cows over 3-8ha
Diversified forages and residues
Conservation agriculture

Peru
Irrigated dairy farms
3-65 cows over 1-60 ha
Diversified forage crops
A Peruvian case

- 25 cows, 3500 l/year/com, RG/Clover/Alfalfa + Oat/Vetch + corn silage
- Objective: increasing milk production with the same herd size

Excess of green forage

Using the excess ➞ + 6500 l/year

Comparing alternative scenarios
Lessons drawn from the four experiences

✓ As viewed by farmers

- Support based on their own situation
- Promotes a more holistic focus
- Scenarios realistic and tangible
- Provided perspective and reorientation of projects
- Knowledge gain (e.g. animal nutrition)
- Highlights the value of data recording and activity planning

✓ As viewed by researchers

- Participatory approach: interaction and involvement with farmers
- Possibility to address a large range of issues in many production contexts
- Better understanding of farmers’ objectives, strategies and decision-making processes
- Linking biotechnical knowledge with farm management knowledge
The way forward

- Extending the support approach to larger populations of farmers by transferring it to agricultural advisors

- Improving the Input / Output interfaces of the simulation tools and simplifying their use (in progress)

- Formalizing an evaluation methodology which takes into account the various aspects of stakeholders’ learning processes

- Strengthening the relationship with biotechnical researchers for using adequate technical and biophysical references
Thanks for attention