Prediction of expected variation in progeny groups and its application in mating programs

EAAP, 2013, Nantes, session 10:
How can farmer benefit from genomic information

D. Segelke*, F. Reinhardt* & G. Thaller§
Dierck.Segelke@vit.de
*Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden/Germany
§Institute of Animal Breeding and Husbandry Christian-Albrechts-University
Olshausenstraße 40 24098 Kiel/Germany
Background

- Different variation of breeding values of sire progeny groups

- AI company: Sires showing high variation
 - Increased probability to find extreme positive candidates

- Production herds: Sires showing less variation
 - Uniform progeny groups are better to manage

- Objective: Predict the variability of future offspring groups using SNP data

<table>
<thead>
<tr>
<th></th>
<th>Cassano</th>
<th>Alexander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>32 kg</td>
<td>33 kg</td>
</tr>
<tr>
<td>Variation</td>
<td>16.5 kg</td>
<td>19.5 kg</td>
</tr>
<tr>
<td>p(>70kg)</td>
<td>1.1%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
Background

Haplotype DGV +10

Haplotype DGV = 0

Sire A: DGV +50

Sperm 1 DGV = 0

Sperm 2 DGV = 10

Sperm17 DGV = 20

Sperm278 DGV = 30

Sperm 391 DGV = 40

Sperm 632 DGV = 50

Mean & variation of sperms

Haplotype DGV = 0

Sire B: DGV +70

Sperm 1 DGV = 20

Sperm 2 DGV = 30

Sperm17 DGV = 30

Sperm278 DGV = 40

Sperm 391 DGV = 40

Sperm 632 DGV = 50

Chrom 1 Chrom 2 Chrom 3 Chrom 4 Chrom 5

Chrom 1 Chrom 2 Chrom 3

Sire B: DGV +70
Materials & Methods

Simulated mean and variation (n = 100,000)

Sire strand A:
Start: 50% strand A, 50% strand B

Sire strand B:

→ Calculate sperm mean and sperm variation of 100,000 simulated sperms
Materials & Methods

- 58,035 Holstein animals (50K chip)
- Phasing via Beagle (v 3.3; Browning and Browning, 2010)
- Traits: Protein and fat yield

\[h_{ij} = \sum_{k=1}^{n} z_{kj} \alpha_k \]

\[\text{MGBV} = \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{H} h_{ij} \]

\[\text{VGBV} = \sqrt{\frac{1}{N - 1} \left[\left(\sum_{j=1}^{N} \left(\sum_{i=1}^{H} h_{ij} \right)^2 \right) - \frac{1}{N} \left(\sum_{j=1}^{N} \sum_{i=1}^{H} h_{ij} \right)^2 \right]} \]

- \(h_{ij} \): i-th parental or maternal haplotype breeding value
- \(z \): indicator of marker k
- \(\alpha_k \): k-th half SNP effect
- \(n \): number of SNP belonging to i-th haplotype
- \(\text{MGBV} \): mean gamete breeding value
- \(N \): number of repetitions of the simulation
- \(H \): number of haplotypes
- \(\text{VGBV} \): Variation of the gamete breeding values
Results

Relation between mean (MGBV) & variation of gamete breeding values (VGBV)
Results

Q-Q Plots for the variation of the gamete breeding values (VGBV)
Results

Distribution of VGBV for fat yield with & without the DGAT1 region

![Graph showing distribution of VGBV for fat yield with and without the DGAT1 region.](image)
Results

Examples for specific matings (protein yield)

<table>
<thead>
<tr>
<th>Sperm (σ_a)</th>
<th>Ovar (σ_a)</th>
<th>Offspring (σ_a)</th>
<th>$>1\sigma_a$</th>
<th>$>2\sigma_a$</th>
<th>$>3\sigma_a$</th>
<th>$>4\sigma_a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGBV VGBV</td>
<td>MGBV VGBV</td>
<td>E(mBV)</td>
<td>E(vBV)</td>
<td>p(%)</td>
<td>N</td>
<td>p(%)</td>
</tr>
<tr>
<td>1.81 0.29</td>
<td>0.55 0.39</td>
<td>2.36</td>
<td>0.68</td>
<td>98</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>1.68 0.52</td>
<td></td>
<td>2.23</td>
<td>0.91</td>
<td>91</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>

![Distribution of the offspring breeding values](image)

- Animal 1
- Animal 2

05 October 2013
gBAP: A genomic mating software for breeding associations to produce future candidates

- **Input:**
 - MGBV (DGV/2) and VGBV monthly estimated for all genotyped bulls & cows
 - Imputed genetic defect state for all animal

- **Output:**
 - Recommendation of optimized mating combinations:
 - \(E(GEBV)\), Prob. of extreme offspring
 - Benefit: Low computation time for costumer
Conclusions

- Offspring groups of sires vary and prediction of the distribution is possible
 - Useful information to increase/decrease the probability to get extreme offspring

- Farmers benefit from genomic selection:
 - Imputing LD to 50K: reduce costs and screening of the whole herds is possible
 - Screening the herds for genetic properties (polled, red factor)
 - Screening and managing recessive alleles/haplotypes (HH1, HH2, HH3)

- New tools (i.e. gBAP) to handle all genomic information and to find the most suitable mating partners are needed
 - gEBV
 - Variation
 - Genetic defects (HH1, HH2, HH3, ...)
 - Genetic properties (polled, coat colour..)
 -
Acknowledgements

German national organization FBF is thanked for financial support

Thank you for attendance!
Results

Correlation between variation of gamete breeding values for different traits and inbreeding coefficients

<table>
<thead>
<tr>
<th></th>
<th>$VGBV_{PY}$</th>
<th>$VGBV_{FY}$</th>
<th>F_G</th>
<th>F_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VGBV_{PY}$</td>
<td>1</td>
<td>0.41</td>
<td>-0.19</td>
<td>-0.09</td>
</tr>
<tr>
<td>$VGBV_{FY}$</td>
<td></td>
<td>1</td>
<td>-0.10</td>
<td>-0.06</td>
</tr>
<tr>
<td>F_G</td>
<td></td>
<td></td>
<td>1</td>
<td>0.52</td>
</tr>
<tr>
<td>F_P</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

$VGBV_{PY}$: Variation gamete breeding values protein yield
$VGBV_{FY}$: Variation gamete breeding values fat yield
F_G: genomic inbreeding coefficient
F_P: pedigree inbreeding coefficient