Prediction of polyunsaturated fatty acid content in the bovine muscle

Benoît-Pierre MOUROT1,2, Dominique GRUFFAT1, Denys DURAND1, Dominique BAUCHART1, Guillaume CHESNEAU2, Guillaume MAIRESSE2, André LEBERT3

1UMR 1213 Herbivores, INRA Theix, 63122 St-Genès-Champanelle, France/VetagroSup, 63370 Lempdes France
2Valorex, La Messayais, 35210 Combourtillé, France
3Institut Pascal, UMR6602 UBP/CNRS/IFMA, 24 Avenue des Landais, BP80026, 63171 Aubière, France
Dietary fatty acids (FA) in human nutrition

FA requirement

- **PUFA**
 - 15% ω6
 - 60% MUFA
 - 25% SFA

\[
\frac{\omega 6}{\omega 3} \leq 5
\]

(Ansnes, 2010)

PUFA: polyunsaturated fatty acid

Important PUFA needs

- MUFA: 39%
- SFA: 44%
- PUFA: 16%

\[
\frac{\omega 6}{\omega 3} : 15 \text{ to } 30
\]

(Afssa, INCA2, 2007)

Unbalanced ω6/ω3 ratio

Mean FA consumption

We don’t consume enough ω3

Human can’t synthetized ω3 PUFA

- Only in plants
- in animals

Introduction
We must be able to measure the content of ω3 PUFA in the beef slaughter chain.

Feeding strategy to increase ω3 PUFA content in animal products: fresh grass, linseed,…

Results control for labels

Nutritional quality information for consumer

Positive economic impact on beef industry
Glossary of fatty acids (FA)

<table>
<thead>
<tr>
<th>DENOMINATION</th>
<th>ABBREVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated FA</td>
<td>SFA</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>-</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>-</td>
</tr>
<tr>
<td>Mono-unsaturated FA</td>
<td>MUFA</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>-</td>
</tr>
<tr>
<td>Poly-unsaturated FA</td>
<td>PUFA</td>
</tr>
<tr>
<td>ω6 Linoleic acid</td>
<td>LA</td>
</tr>
<tr>
<td>Arachidonic acid</td>
<td>ARA</td>
</tr>
<tr>
<td>α-linolenic acid</td>
<td>ALA</td>
</tr>
<tr>
<td>ω3 Eicosapentaenoic acid</td>
<td>EPA</td>
</tr>
<tr>
<td>Decosahexaenoic acid</td>
<td>DHA</td>
</tr>
</tbody>
</table>

Context

MOUROT BP/EAAP 2013
Method of fatty acids measurement

Gas-Liquid Chromatography
- Time-consuming
- Costly
- Tissue sampling
- Laboratory material
- Not adapted for systematic daily controls

Near-Infra Red Spectroscopy
- Short analysis time (1 to 2 min)
- Cheaper (than reference method)
- No depreciation
- Slaughter chain adapted (portable)
Original work

<table>
<thead>
<tr>
<th>Major FA</th>
<th>GLC</th>
<th>NIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFA</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Palmitic Acid</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Stearic Acid</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>MUFA</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Oleic Acid</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>PUFA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ω6) LA</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>(ω6) ARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ω3) ALA</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>(ω3) EPA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor FA</th>
<th>GLC</th>
<th>NIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ω3) ALA</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>(ω3) EPA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PUFA are more interesting for beef industry **BUT** NIRS cannot measure them.

Is there a link between major FA and PUFA?

NIRS can’t measured PUFA. We need to establish an alternative method to measure PUFA.

Objective
OBJECTIVES:

To develop prediction equations in order to predict PUFA indirectly from major FA
Materials and methods

• Prediction database:

W3Meat in the data-warehouse Nutriflux\(^{\text{INRA}}\) from published beef FA composition (182 references, H 32000 values, >2000)

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Diets</th>
<th>Breeds</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longissimus Thoracis</td>
<td>Concentrate</td>
<td>65 breeds and crossbreeds</td>
<td>Steer</td>
</tr>
<tr>
<td>Rectus Abdominis</td>
<td>Pasture</td>
<td></td>
<td>Cull cow</td>
</tr>
<tr>
<td>Semimenbranosus</td>
<td>Silage</td>
<td></td>
<td>Heifer</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

• Validation database:

from industrial individual beef samples

(595 animals H 10000 values)

• Selected statistical method:

Multiple linear regression (\(^{\text{R}}\) software)

Prediction equations were performed by using a bibliographic database and linear regression.
Prediction equations of total PUFA and ω6 PUFA

predictors: SFA, Palmitic Acid, Stearic Acid, MUFA, Oleic acid

Each prediction equation has been tested and validated with the validation dataset.

Total PUFA

Adjusted $R^2 = 0.86$

$n_{trt} = 283$

Measured, %

Predicted, %

ω6LA

Adjusted $R^2 = 0.79$

$n_{trt} = 301$

Measured, %

Predicted, %

ω6 ARA

Adjusted $R^2 = 0.72$

$n_{trt} = 283$

Measured, %

Predicted, %
Prediction equations of ω_3 PUFA

predictors: SFA, Palmitic Acid, Stearic Acid, MUFA, Oleic acid

ω_3 PUFA predictions are not satisfactory

ω_3 EPA

Predicted, %

Adjusted $R^2 = 0.43$
n_{trt} = 270

ω_3 ALA

Predicted, %

Adjusted $R^2 = 0.48$
n_{trt} = 299

ω_6 LA / ω_3 ALA

Predicted, %

Adjusted $R^2 = 0.16$
n_{trt} = 299
Strategy to improve the prediction of beef ω3 PUFA

Prediction equations

- To update the database with recent data (from bibliography and own laboratory data).
- To incorporate more variable data (extreme data).

NIRS calibrations

- To find new tissue samples more variable in ω3 PUFA.
- To refine FA spectra treatments.
Conclusion

NIRS data used with prediction equations of PUFA

Well adapted for Total PUFA and ω6 PUFA determinations

More studies are in progress for ω3 PUFA determinations

Information on nutritional quality of beef

Could have a positive impact for producers, industries, and consumers
Thank you for your attention!
NIRS – method (1)

(De Marchi et al., 2013)

- Infrared scanning
- Reflected beam
- Meat
- Captor
NIRS – method (2)

(De Marchi et al., 2013)
NIRS – calibration

For a component

Method: Partial least square (PLS) regression

Model with $R^2 > 0.82$

= well calibrate (Guy et al., 2011)
Nutriflux Database
Prediction equation – Validation

- New dataset
- ≈ 600 FA composition from industrial animal production
- 3 different laboratories analysis

VALIDATED

But

laboratory effect to take care
What is a PUFA?

18:3 n-3 \(\alpha \)-linolenic acid (ALA)

PRECURSOR

18:2 n-6 Linoleic acid (LA)

Positive effects on health:
- Reduces risk of heart diseases
- Role in nervous system development

\(\omega 3 \) consumption: 0.8 g/d
\(\omega 3 \) requirement: 2.2 g/d

\(\Delta 5 \) \& \(\Delta 6 \) désaturase

18:3 n-3 \rightarrow 18:2 n-6

18:2 n-6 \rightarrow 20:4 n-6

20:4 n-6 \rightarrow 20:5 n-3 \rightarrow 22:5 n-3

20:5 n-3 \rightarrow 22:5 n-3

Elongase 5

Only find in plants (grass, oilseed)

Only find in animals which already have synthetized them

\(\omega 3 \) PUFA class have a great health benefic but we don’t enough consume them

INRA

MOUROT BP/ EAAP 2013

Context

26/08/2013