A dairy cow well adapted to once daily-milking (ODM) has:

- **Low** relative milk yield loss when: TDM (twice daily-milking) → ODM (once daily-milking)
- **Strong** milk recovery when: ODM (once daily-milking) → TDM (twice daily-milking)

The aim of the study was to investigate:

- Genetic variability of relative milk yield loss and recovery
- And their genetic relationships with previous milk fat and protein contents (before switching cows to ODM and back to TDM) in order to evaluate predictive ability of milk composition

Materials and methods

- **Experimental design:**
 - 368 Holstein x Normande dairy cows in 2nd lactation
 - Stage of lactation: <80 DIM (n=111); 80 – 90 DIM (n=148); >90 DIM (n=109)
 - Age at first calving: 2 years (n=199); 3 years (n=169)
 - 19 groups for 7 years (n=7 to 26)

- **Treatment:** 3 periods
 - 1 week TDM1, 3 weeks - ODM, 2 weeks TDM2

- **Measurements:**
 - Milk yield at each milking
 - Milk fat and protein contents at each milking for:
 - TDM1: d-5; ODM: 4d/wk (from Monday to Thursday); TDM2: d30

- **Analysed traits:**
 - Relative milk loss: \(RML = \frac{(\text{Milk}_{ODM} - \text{Milk}_{TDM1})}{\text{Milk}_{TDM1}} \times 100 \)
 - Relative milk recovery: \(RMR = \frac{(\text{Milk}_{TDM2} - \text{Milk}_{ODM})}{\text{Milk}_{ODM}} \times 100 \)

- **Genetic parameters:**
 - Performed by REML using VCE6.0; statistical model for each trait:
 \[\mathbf{y} = \mathbf{X}\beta + \mathbf{Za} + \mathbf{e}\]
 - \(\beta\): vector of fixed effects: stage at lactation, age at first calving, group
 - \(\mathbf{Z}\): incidence matrices

Results

- **Phenotypic results:** Milk yield averaged 28.3 kg/d during TDM1 (±5.4); it decreased by 8 kg/d (±2.9) during ODM and increased by 4.0 Kg/d (±2.5) when switched back to TDM

- **Heritability (\(h^2\)) of relative milk loss and recovery, and genetic correlation:**

<table>
<thead>
<tr>
<th></th>
<th>RML</th>
<th>RMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RML</td>
<td>0.26 (±0.08)</td>
<td>-0.43 (±0.13)</td>
</tr>
<tr>
<td>RMR</td>
<td>0.43 (±0.06)</td>
<td></td>
</tr>
</tbody>
</table>

- **Genetic correlations with milk composition during control periods:**

<table>
<thead>
<tr>
<th></th>
<th>RML</th>
<th>RMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC_{TDM1}</td>
<td>0.28 (±0.15)</td>
<td>FC_{ODM}</td>
</tr>
<tr>
<td>PC_{TDM1}</td>
<td>0.50 (±0.13)</td>
<td>PC_{ODM}</td>
</tr>
</tbody>
</table>

Conclusion

- Although based on a small crossbred population, this study has shown that the 2 components of the ability to ODM are under genetic control:
 - Heritability: moderate for relative milk loss and high for relative milk recovery
 - Partial genetic relationship between them: cows with higher milk yield loss enable to recover more milk
 - Milk composition (especially PC) is partially genetically related to the ability to ODM: a high PC during TDM1 or ODM is respectively associated with a lower relative milk loss, and a lower relative milk recovery