The effect of ewe prolificacy level on number of lambs born, lamb birth weight and lamb mortality

P.Creighton1, F Kelly1 & N McHugh2
1 Animal & Grassland Research and Innovation Centre, Teagasc Athenry, Co Galway
2 Teagasc Moorepark, Fermoy, Co Cork.
Overview

- Introduction
- Objective
- Materials and Methods
- Results
- Potential system output
- Potential system profitability
- Conclusions
Introduction

• Grass based lamb production systems
 • Challenge
 • Increase output of lamb
• Two most important factors
 • Stocking Rate
 • Ewe Prolificacy
• Teagasc Roadmap targets
 • SR – 13 ewes/ha
 • Weaning 1.8 lambs/ewe
Objective

To investigate the effect of ewe prolificacy level on the number of lambs born, lamb birth weight and lamb mortality
Materials and Methods

• Two groups of primiparous two tooth ewes were assembled
 • 180 animals in each group
 • Medium prolific group – Suffolk x ewes (MP)
 • High prolific group – Belclare x ewes (HP)
 • Up to 0.3 lamb/ewe difference (Hanrahan 1994)
Materials and Methods

• Data Analysis
 • Analysis of variance using proc GLM SAS
 • Odds ratios also calculated using proc Genmod
 • Odds ratios derived by acquiring the exponent of the partial regression co-efficients
 • Odds ratio greater than 1 implies increased likelihood of an outcome
Results

Lambs born/ewe

• Prolificacy group significant effect (P<0.05) on number of lambs born/ewe
 • 1.80 HP
 • 1.66 MP

• HP group 1.83 times higher likelihood of having greater number of lambs than MP group
Results

Lamb birth weight and mortality levels

• Average Lamb birth weight 0.14kg lower for HP group (P<0.05)
 • 4.29 kg MP
 • 4.15 kg HP

• Mortality at birth 1.1 times more likely in HP group (P<0.01)

• 1.4 times greater likelihood of a lamb not surviving to weaning (14 weeks) in HP group
Potential from system

Carcase output/ha

<table>
<thead>
<tr>
<th></th>
<th>Prolificacy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SR</td>
<td>Medium (1.66 lambs/ewe)</td>
<td>High (1.8 lambs/ewe)</td>
</tr>
<tr>
<td></td>
<td>10 ewes/ha</td>
<td>321</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>12 ewe/ha</td>
<td>386</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>14 ewes/ha</td>
<td>448</td>
<td>489</td>
</tr>
</tbody>
</table>
Potential from system
Gross margin/ha (€)

<table>
<thead>
<tr>
<th>ewes/ha</th>
<th>GM €/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>MP</td>
</tr>
<tr>
<td>12</td>
<td>HP</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

The Irish Agriculture and Food Development Authority
Conclusions

• Ewe prolificacy level can have an effect on lamb birth weight and mortality levels
• Increasing the prolificacy level of ewes in a flock can have a positive effect on farm output and profitability
• Further work on management and nutrition of HP flocks required to minimise lamb mortality levels
Thank you