French sheep-for-meat production: state of the art and perspectives for sustainable farming systems.

Sneessens I.1, 2, 3, Brunschwig G.2, 1, Benoit M.1, 2

1: INRA, UMR1213, F-63122 Saint-Genès-Champanelle
2: Clermont University, VetAgro Sup, UMR1213, BP 10448, F-63000 Clermont-Ferrand
3: French Environment and Energy Management Agency (ADEME), 20 avenue du Grésillé - BP 90406 F-49004 Angers Cedex 01

Referee of ADEME: Trevisiol A. - Service of Agriculture and Forest
Introduction – Analysis & Diagnostic – Design – Conclusion & Perspectives

Over the last 30 years, French sheep-for meat production by 50%

Nowadays, self-sufficiency of 50 %

Remaining production systems are
 ▪ still below international competitivness
 ▪ threatened by future economic and climatic contexts
 ▪ Pointed out for some of their environmental impacts

To maintain French Sheep-for-meat production systems, it’s clearly needed to identify what systems can face actual and future challenges
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

- Evolution analysis of French sheep-for-meat production systems in plainland areas
- Identification of drivers & Expected evolutions
- Defining objectives for sustainable farming systems

Montmorrillon
Evolution of farming systems – Drivers - Objectives

EXTENSIVE GRAZING SYSTEMS

:System with low labour and inputs needs

(Spring Lambings)

(JEAN, 1986)
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

Evolution of farming systems – Drivers - Objectives

- **Extensive grazing systems**
- DIVERSIFICATION WITH CROPS

= influence of **Western Migrants**

==> The competitiveness of local specialized production systems is questioned.

(JEAN, 1986)
Evolution of farming systems – Drivers - Objectives

The Green Revolution led to specialized intensive systems, mainly through:
- Mechanization
- Low input prices
More liberal CAP led to:

- a rise in imports of sheep meat: 20 → 50 % of national self-sufficiency
- A decrease of domestic prices of 40% (Benoit and al., 1991)
- Specialized intensive sheep systems are no longer competitive
Evolution of farming systems – Drivers - Objectives

- Extensive grazing systems
- Specialized intensive systems
- Diversification with cultures
- Diversification or Discontinuation

Autumn Lambings

Spring + Autumn Lambings
Introduction – Analysis & Diagnostic – Design – Conclusion & Perspectives

Evolution of farming systems – Drivers - Objectives

- **1930s**: Extensive grazing systems
- **1950s**: Specialized intensive systems
- **1970s**: Diversification with cultures
- **1980s**: Diversification or Discontinuation
- **1990s**: Cooperatives

Accelerated Systems: 3 lambs/ewe over 2 years

![Graph showing the timeline and systems evolution](chart.png)
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

Evolution of farming systems – Drivers - Objectives

- Extensive grazing systems
- Specialized intensive systems
- Diversification with cultures
- Diversification or Discontinuation
- Autumn Lambings

Profitability largely affected by **European reforms*** and **domestic factors**

- CAP Reform 1992*
- Compensatory Sheep Premium*
- Territorial contracts
- « Plan Barnier »

DIVERSIFICATION (CASH CROPS) OR DISCONTINUATION
Other characteristics of evolution (1987 – 2010)

- Total Agricultural Area: + 66% (90 → 150 ha)
- Number of ewes: + 42% (480 → 680 ewes)
- Labour productivity: + 35% equLU/worker

(sample of 12-25 farms , INRA network)
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

Evolution of farming systems – **Drivers** - Objectives

DRIVERS
- Economic
- Political & Institution.
- Spatial
- Social

Adoption / Evolution / Discontinuation
Of
Sheep-for-meat Production System
SCALE ECONOMIES:
cost advantages that enterprises obtain due to a higher size of production,
because cost per unit of output decreased as fixed costs are spread out over more units of output.

SCOPE ECONOMIES:
cost advantages that enterprises obtain due to the production of two or more inputs simultaneously.

⇒ *Determine the best production set for a given economic context*
Labour income is lower in sheep farming systems

Constant Euros 2012

(Agreste, RICA)
Case of French Sheep-for-meat production:
Profitability mainly determined by:
- High numerical productivity
- Low consumption of concentrates

Increasing of input prices expected
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

Evolution of farming systems – **Drivers** - Objectives

- **ECONOMIC**
- **POLITICAL & INSTIT.**
- **SPATIAL**
- **SOCIAL**

- CAP reforms
- Domestic factors
- Local governances (cooperatives, ...)

CAP reforms
Domestic factors
Local governances (cooperatives, ...)
Subsidies per worker are higher than income

Constant Euros

Subsidies per worker are higher than income (INRA Network)
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

Evolution of farming systems – **Drivers** - Objectives

- CAP reforms
- Domestic factors
- Local governances (cooperatives, ...)
 - Uncertainty about future European financial supports
 - New environmental policies (GHG, biodiversity, ...)?
 - New forms of governances?
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

Evolution of farming systems – **Drivers** - Objectives

- **ECONOMIC**
- **POLITICAL & INSTIT.**
- **SPATIAL**
- **SOCIAL**

Pedoclimatic conditions
Access to factors of production

⇒ **Main evolution expected: climatic hazards**
Introduction – **Analysis & Diagnostic** – Design – Conclusion & Perspectives

Evolution of farming systems – **Drivers** - Objectives

Constant efforts to **simplify** and **alleviate** labour work
Evolution of farming systems – Drivers - Objectives

PROFITABILITY
High and constant in presence of
- Climatic and economic hazards
- Higher input prices on the long term

ENVIRONMENTAL FRIENDLY
- Lower GHG emissions, Mj consumption
 - Higher biodiversity
 - Lower pollutions

VIVABILITY
AGROECOLOGY >>> CROP-LIVESTOCK INTEGRATION

High autonomy through integration:
- Transfer of organic fertilizers
- Transfer of feeds (crops or subproducts)
- Rotational patterns

More resilient through diversification

More environmental friendly

BUT complexity of management (is it a way to enhance rural cohesion?)

PROFITABILITY

ENVIRONMENTAL FRIENDLY

VIVABILITY

+ +

+ +

- (?)
PROFITABILITY

ENVIRONMENTAL FRIENDLY
- Lower GHG emissions, Lower MJ Consumption
- Biodiversity, Lower Pollution

VIVABILITY

HIGH NUMERICAL PRODUCTIVITY
Reproduction Rythm, Zootechnic Characteristics

BUT
- Complexity of management
- Needs well-adapted races
- Needs use of concentrates

[Diagram showing relationships and impacts such as positive (+) and negative (−) effects between the categories.]
GHG Emissions decrease with higher numerical productivity

(INRA Network, 1180 farms -24 years)
HIGH NUMERICAL PRODUCTIVITY
Reproduction Rythmn
Zootechnic Characteristics

BUT
- Complexity of management
- Needs well-adapted races
- Needs use of concentrates

PROFITABILITY

ENVIRONMENTAL FRIENDLY
- Lower GHG emissions, Lower MJ Consumption
- Biodiversity, Lower Pollution

VIVABILITY

+ + +

(?)
Preservation of sheep-for-meat production systems is questioned in plainland areas.

This production can be seen as a tool to enhance sustainability of crop farming systems

BUT

• Crop Livestock Integration ➔ Need for a better understanding

• Sustainability ➔ Which compromise between objectives?
Thanks to our financial supports, the French National Institute for Agricultural Research (INRA-Phase/SAE2) and the French Environment and Energy Management Agency (ADEME).