Feedipedia: An online encyclopedia of animal feeds

Feedipedia is an open access information system on animal feed resources that provides information on nature, occurrence, chemical composition, nutritional value and safe use of nearly 1400 worldwide livestock feeds. It is managed jointly by INRA, Cirad, AFZ and FAO.

The main objective of Feedipedia is to provide extension and development workers, planners, project formulators, livestock farmers, science managers, policy makers, students and researchers with the latest scientific information to help them identify, characterize and properly use feed resources to sustainably develop the livestock sector.

This is particularly important in emerging and developing countries where feed resources available locally are often under-utilized due to lack of information. Providing global knowledge on feed resources,

Sustainable Animal Diets - FAO Survey

Can we move towards "Sustainable animal diets"? Give your opinion by answering this FAO survey until 10 August 2013 in English, French or Spanish. You will receive a report of the survey analysis and a CD-ROM containing FAO publications in the area of feeding, feed and feed safety and other FAO publications. Click here to read more about the survey.

Explore Feedipedia

Click here to see the list of 232 completed datasheets.

Recent publications

Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products - Wadhwa et al.,
Feedipedia: a worldwide reference on animal feed resources

Valérie Heuzéa, Gilles Trana, Denis Bastianellib,
Harry Archimèdec, Daniel Sauvantd

aAFZ/ bCIRAD/cINRA/dAgroParisTech
The Feedipedia program

- Merging of two projects
- French Consortium
 - **INRA**: research
 - **CIRAD**: research (tropics)
 - **AFZ**: association (French feed database)
- FAO: Food and Agriculture Organization
 - Updating of **AFRIS** (Animal Feed Resources Information System)
Animal products consumption

Source, FAO 2006
Production of feed-related information

- Number of scientific papers per decade
 - For each feed, a few hundred peer-reviewed papers at best in the 1970s, up to several thousands in the 2000s
 - Emerging and developing countries produce large numbers of feed-related papers

![Graph showing the number of scientific papers per decade for different feeds on a logarithmic scale.](image)
Feed information
New needs

- Accurate and updated information
- New productions (aquaculture)
- New feeds (biofuels byproducts, insects)
- Lesser-known resources
- Environmental concerns, animal welfare
Objectives and expected results

- To meet the demand for **updated, reliable and comprehensive** feed information
 - Feeds not included in tables produced in temperate countries + forages
 - Conventional and non-conventional feeds
 - Large coverage of livestock species

- To help **identify, characterize and properly use** feed resources to sustainably develop the livestock sector.
An open access information system on animal feed resources

Information on the nature, occurrence, chemical composition, nutritional value, potential constraints and guide for safe use of about 1400 feeds

Worldwide audience

- Industry, livestock farmers, researchers, project planners, extension workers, education institutions and students
Feedipedia team

● **AFZ** : 2 engineers
 ● Project management, database and website development and management, datasheet writing and editing

● **INRA et CIRAD** : 23 researchers
 ● Scientific experience, information collection, recommendations
 ● Ruminants (15 people), poultry (2), pigs (4), rabbits (1), fish (1)
A feed encyclopedia

● Approx. 700 datasheets (in English)

● Qualitative information
 ● General information (names, description, distribution, forage management, potential constraints, processes and environmental impact)
 ● Nutritional attributes
 ● Feeding recommendations for the main livestock species

● Illustrations

● Literature references

● Quantitative information
 ● Tables of nutritive values
Literature references

- **10230** references in the website
- **50 %** published since 2000
Image collection

- 517 digital images
 - feed materials
 - process charts
- 123 images created by AFZ
- Most of the images are under a « free » license (Creative Commons) or in the public domain
Data collection

- 2.28 million raw data collected from the scientific literature and other databases
 - including 50,000 *in vivo* data
- 5900 feed types and 460,000 feed samples
Data per category of parameter

98% chemical
2% in vivo
Feed tables parameters

- **Proximate analysis**: dry matter, crude fibre, ether extract, ash, Van Soest, starch, sugars, gross energy
- **Minerals**: Ca, P, Mg, Na, K, Cu, Mn, Zn, Fe
- **Amino acids**
- **Secondary metabolites**
- **Ruminants**: DM, OM, N and energy digestibilities, DE and ME, N degradability parameters
- **Pig**: energy and N digestibility, DE, ME and NE
- **Poultry**: AMEn, TME
- **Rabbits**: energy digestibility and DE
- **Salmonids**: energy digestibility and DE
Creation of feed tables

- Identification of feed groups
- Meta-analysis

Rice brans: crude protein vs ether extract

- Rice bran
- Rice bran, crude fibre < 4%
- Rice bran, crude fibre > 20%
- Rice bran, crude fibre 11-20%
- Rice bran, crude fibre 4-11%
- Rice bran, defatted, crude fibre < 11%
- Rice bran, defatted, crude fibre > 20%, protein < 10%
- Rice bran, defatted, crude fibre 11-20%
- Rice bran, defatted, protein < 10%
- Rice feed flour
- Rice feed flour, starch > 50%
- Rice feed flour, with broken rice
- Rice flour
- Rice hulls
- Rice polishings
- Rice pollard
Creation of feed tables

- Calculation of raw statistics
- Use of equations
 - Consistent profiles
 - Correct the bias due to differing numbers of observations: 2000 crude protein values, 500 crude fibre values and 50 ADF values
 - Calculate nutritional values
 - Digestibilities, energy
Equations

- Prediction of chemical and *in vivo* parameters
- 3000 equations, 250 used in the tables
- Calculated from the database or obtained from the literature
Feed tables

Coconut, copra, oilmeal, solvent extraction

![Image of feed tables](image-url)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Unit</th>
<th>Avg</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysine</td>
<td>% protein</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ruminant nutritive values</th>
<th>Unit</th>
<th>Avg</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter digestibility</td>
<td>%</td>
<td>72.4</td>
<td>69.9</td>
<td>72.4</td>
<td>2 *</td>
<td></td>
</tr>
<tr>
<td>Energy digestibility</td>
<td>%</td>
<td>70.8</td>
<td>65.8</td>
<td>70.8</td>
<td>2 *</td>
<td></td>
</tr>
<tr>
<td>Digestible energy</td>
<td>MJ/kg DM</td>
<td>13.2</td>
<td>12.2</td>
<td>13.2</td>
<td>2 *</td>
<td></td>
</tr>
<tr>
<td>Metabolizable energy</td>
<td>MJ/kg DM</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen digestibility</td>
<td>%</td>
<td>74.3</td>
<td>48.9</td>
<td>74.3</td>
<td>2 *</td>
<td></td>
</tr>
<tr>
<td>Nitrogen degradability, k=6%</td>
<td>%</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Website

● An open access encyclopedia
 ● Under test since 2010
 ● Open on 22nd of October 2012
 ● www.feedipedia.org

● A collaborative tool for authors and editors
Feedipedia: An online encyclopedia of animal feeds

Feedipedia is an open access information system on animal feed resources that provides information on nature, occurrence, chemical composition, nutritional value and safe use of nearly 1400 worldwide livestock feeds. It is managed jointly by INRA, Cirad, AFZ and FAO.

The main objective of Feedipedia is to provide extension and development workers, planners, project formulators, livestock farmers, science managers, policy makers, students and researchers with the latest scientific information to help them identify, characterize and properly use feed resources to sustainably develop the livestock sector.

This is particularly important in emerging and developing countries where feed resources available locally are often under-utilized due to lack of information. Providing global knowledge on feed resources,

Sustainable Animal Diets - FAO Survey

Can we move towards "Sustainable animal diets"? Give your opinion by answering this FAO survey until 10 August 2013 in English, French or Spanish. You will receive a report of the survey analysis and a CD-ROM containing FAO publications in the area of feeding, feed and feed safety and other FAO publications. Click here to read more about the survey.

Explore Feedipedia

Click here to see the list of 232 completed datasheets.

Recent publications

Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products - Wadhwa et al.
Content

- 232 updated datasheets
- 4.5 pages (excluding tables and refs)
 - 50 refs/datasheet
 - 48% general information, 26% ruminants recommendations, 26% others species
- More than 600 tables of nutritive value
Datasheets

Feedipedia: Animal feed resources information system

Cassava peels, cassava pomace and other cassava by-products

Names (common, Latin, synonyms)

Common names
- Cassava peelings, cassava peels
- Cassava pomace, cassava bagasse, cassava bran, cassava pulp, cassava fibre, cassava starch residue
- Cassava sievings, pan sievate

Species
Manihot esculenta Crantz [Euphorbiaceae]

Synonyms

Related feed(s)
- Cassava foliage
- Cassava tubers

Description
The processing of cassava tubers yields the following by-products that can be valuable livestock feeds when properly processed (Aro et al., 2010):

- Cassava peels can represent 5 to 15% of the root (Aro et al., 2010; Nwokoro et al., 2006). They are obtained after the tubers have been water-cleansed and peeled off mechanically (Aro et al., 2010). They may contain high amounts of cyanogenic glycosides and have a higher protein content than other tuber parts (Tewé, 2004).
- Cassava pomace, also called cassava fibre, cassava bran, cassava bagasse, cassava starch residue and cassava pulp: all these terms refer to the solid fibrous residue (up to 17% of the tuber) that remains after the flour or starch content has been extracted (Aro et al., 2010). The quality and appearance of these residues vary with plant age.
Datasheets

Each product is described

Distribution

Processes to increase nutritive value

Distribution

Cassava by-products are generally found in the vicinity of factories where cassava tubers are processed into starch or flour.

Processes

Cassava peels

Fresh cassava peels have 3 main deficiencies: they spoil very quickly and contain high amounts of cyanogenic glycosides. They should thus be processed in order to control spoilage and to preserve their nutritive quality (Oboh, 2006; Salami et al., 2003; Tewe, 1992; Adegbola et al., 1985). Different processes are effective in reducing cyanogenic glycosides: sun-drying, ensiling and soaking + sun-drying have been assessed and have yielded satisfactory results (Salami et al., 2003; Tewe, 1992; Adegbola et al., 1985).

Good quality silage can be obtained after chopping the peels to equal lengths of about 2 cm for easy compaction, and waiting for 2 days to reduce moisture content from 70-75% to about 40%. Under these conditions, cassava peel silage after 21 days was light brown in colour, firm in texture and had a pleasant odor. The pH was 4.4, and no fungal growth was observed (Asaolu, 1988 cited by Smith, 1988).

In Nigeria, drying cassava peels on black plastic sheets has been drawing the attention of smallholders as shown in the video below:
Datasheets

Forage management

Buffel grass needs time to establish and it should not be grazed before it has established to the height of 20-30 cm, depending on establishment conditions (Cock et al., 2006). It should then be cut or grazed at 7 cm high and will stand continuous or rotational grazing and 6-8 week cutting intervals (FAO, 2010; Mannotte et al., 1992). As the maximum dry matter production occurs between 42 and 56 days of plant age and stem-leaf ratio increases rapidly with plant maturity, it has been proposed that buffel grass should be grazed from 42 to 56 days of age (Garcia et al., 1980). Buffel grass may also be sown with cumbrous grass (Sorghum x alnum) as it establishes slower but for a longer period than this short-lived perennial. The association provides readily good quality pasture. Rhodes grass (Chloris gayana) and Guinea grass (Megathyrsus maximus) are also convenient companions for buffel grass (Mannotte et al., 1992).

Frequent grazing improves nitrogen content. When used for hay, it should be cut in the early flowering stage so that nutritive value does not drop. Fire can also be beneficial as it destroys old vegetation and allows the plant to recover and young leaves with higher nutritive value appear (FAO).

Environmental impact

Soil erosion control

Buffel grass is valuable for erosion control in that it is one of the best adapted grasses to semi-arid conditions. In Australia, it was successfully planted for revegetation and erosion control in parks, reserves and river catchment from the 1960s to the mid-1970s (Payne et al., 2004; Albrecht et al., 1997). Using buffel grass in combination with ponding banks in a severely degraded area increased grazing capacity 10-fold after five years in a Central Australia farm (Friedel et al., 2006). However, its tussocky nature does not allow for complete ground cover (FAO, 2010).

Weed

Buffel grass is an aggressive grass due to its root system and allelopathic toxicity towards other seeds. It spreads readily and may
Datasheets

Ruminants

Cassava peels

Cassava peels can be used as a roughage and as an energy feed in ruminant diets. However, sun drying, ensiling and fermentation should be used to prevent HCN poisoning when using bitter cassava varieties (Pipat Lounglawan et al., 2011; Smith, 1988). Cassava peels should not be fed alone, as their protein and mineral content cannot support optimum rumen function and productivity in ruminants, and their optimal utilization requires sources of readily fermentable protein and by-pass protein as well as micronutrients including sulphur, phosphorus, and B vitamin. Cassava peels are then a valuable feed, and significant increases of animal performances have been reported when they are added to ruminant diets (Smith, 1988).

Digestibility and degradability

Cassava peels are highly digestible products, with reported values of 78% and 81% for DM and OM total tract digestibility respectively (Baah et al., 1999). DM degradability is also high, with reported values higher than 70% (Smith, 1988).

Cattle

In Ghana, weight gains of 0.29 or 0.33 kg/day (vs 0.07 kg/day for the control diet) were recorded with cross-bred bullocks grazed and supplemented with dried or ensiled peels (Larsen et al., 1976). In an experiment with bulls in Vietnam, total DMI increased with the amount of cassava peels (total DMI = 0.008 DMI of the peels in kg/100 kg LW/d) while grass DMI decreased (grass DMI= -0.017 DMI of the peels in kg/100 kg LW/d + 2.15) (Pham Ho Hai et al., 2009). Because of their high degradability, cassava peels have been also used as an energy supplement in cattle: cassava peels could partly replace (30% of total DMI) energy concentrates, with no influence on the intake, digestibility, microbial efficiency, and nitrogen retention (Azevêdo et al., 2011).

Pham Ho Hai et al., 2009. Livestock Research for Rural Development, 21 (9): 156

Reference

All references can be clicked on
Cassava peels, cassava pomace and other cassava by-products

Tables of chemical composition and nutritional value

Cassava pomace, dehydrated

<table>
<thead>
<tr>
<th>Main analysis</th>
<th>Unit</th>
<th>Avg</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>% as fed</td>
<td>89.4</td>
<td>3.0</td>
<td>83.5</td>
<td>94.8</td>
<td>11</td>
</tr>
<tr>
<td>Crude protein</td>
<td>% DM</td>
<td>2.3</td>
<td>0.7</td>
<td>1.1</td>
<td>3.4</td>
<td>11</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>% DM</td>
<td>16.7</td>
<td>4.4</td>
<td>12.1</td>
<td>26.9</td>
<td>9</td>
</tr>
<tr>
<td>NDF</td>
<td>% DM</td>
<td>35.5</td>
<td>11.9</td>
<td>7.3</td>
<td>43.3</td>
<td>8</td>
</tr>
<tr>
<td>ADF</td>
<td>% DM</td>
<td>20.8</td>
<td>11.4</td>
<td>3.3</td>
<td>35.2</td>
<td>8</td>
</tr>
<tr>
<td>Ether extract</td>
<td>% DM</td>
<td>0.7</td>
<td>0.6</td>
<td>0.2</td>
<td>2.0</td>
<td>8</td>
</tr>
<tr>
<td>Ash</td>
<td>% DM</td>
<td>4.9</td>
<td>1.3</td>
<td>2.7</td>
<td>6.6</td>
<td>9</td>
</tr>
<tr>
<td>Starch</td>
<td>% DM</td>
<td>52.3</td>
<td>7.0</td>
<td>42.3</td>
<td>64.0</td>
<td>8</td>
</tr>
<tr>
<td>Sugars</td>
<td>% DM</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Gross energy</td>
<td>MJ/kg DM</td>
<td>16.2</td>
<td>1.1</td>
<td>14.7</td>
<td>17.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Minerals

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Unit</th>
<th>Avg</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>g/kg DM</td>
<td>7.7</td>
<td>2.6</td>
<td>3.8</td>
<td>11.9</td>
<td>5</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>g/kg DM</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Amino acids

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Unit</th>
<th>Avg</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>% protein</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Arginine</td>
<td>% protein</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>% protein</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Cassava peels, cassava pomace and cassava by-products

References

Searches in Feedipedia

List of feeds

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legume forages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Latin name

- Acacia (Acacia brevispica)
- Acacia (Acacia gilpinii)
- Acacia (Acacia laeta)

Latin name synonym

- African stylo (Stylosanthes fruticosa)
- African yam bean (Sphenostylis stenocarpa)
- Agati (Sesbania grandiflora)

Select category

Select species

Enter name

Select all feeds

Search for feeds in the list

EAAP Meeting - August 27, 2013
Links to free on-line resources

Resources
- Bibliography
- Glossary
- Images
- On-line resources
 - Books
 - Journals
 - Literature databases
 - Plant and feed databases

On-line resources

Books

<table>
<thead>
<tr>
<th>Title</th>
<th>Summary</th>
<th>Posted</th>
</tr>
</thead>
<tbody>
<tr>
<td>The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition - FAO, WFP and IFAD, 2012. FAO, Rome</td>
<td>This publication presents new estimates of undernourishment that show that progress in reducing hunger has been better than previously believed, and that it may be possible to reach the MDG hunger target by 2015. However, eradication of hunger remains a major global challenge. This year’s report also discusses the role of economic growth in reducing undernourishment.</td>
<td>October 11, 2012</td>
</tr>
<tr>
<td>Balanced feeding for improving livestock productivity. Increase in milk production and nutrient use efficiency and decrease in methane emission - FAO, 2012. by M.R. Garg. FAO Animal Production and Health Paper No. 173. Rome, Italy</td>
<td>This publication outlines an approach used by National Dairy Development Board (India) to balance rations in smallholder dairy farms in order to enhance milk production with existing feed resources, using transfer of scientific knowledge in an easy-to-use and easy-to-implement manner.</td>
<td>October 9, 2012</td>
</tr>
</tbody>
</table>

Select resources on left menu

Access the book by clicking on the title
Audience since
November, 7 – 2012

● 650,000 page views
● 220,000 visits
● 155,000 unique visitors
 ● 28.4% returning visitors
● About 1000 daily visits (work days)
An international audience

United States 14%
India 9%
France 6%
United Kingdom 3%
Philippines 6%
Spain 3%
Australia 2%
Malaysia 2%
Canada 2%
Nigeria 3%

Others 50%

187 countries
An international audience

- Asia: 29%
- Europe: 24%
- Americas: 24%
- Africa: 12%
- Oceania: 3%
- Unknown: 8%
- Asia: 29%

EAAP Meeting - August 27, 2013
Traffic sources

- Search engines: 73%
- Direct traffic: 18%
- External sites: 9%
Top Google rankings

- First page for major feeds including sunflower meal, copra meal, palm kernel meal etc.
- Top rank in Google search results for numerous feed plants
Examples of queries

- www.google.com/search?q=content+of+b.. banana+trunk
- www.google.com/search?q=cassava+tubers+as+swine+feed
- www.google.co.in/search?q=Benefits+of+supplementat.. silkworm+pupae+meal
- www.google.co.in/search?q=chemical+composition+of+shorea+robusta+leaves
- www.google.co.bw/search?q=use+of+sunflower+seed+ca.. in+creep+diet
- www.google.es/search?q=chicken+feed+sweet+potato+mea..
- www.google.com.lb/search?q=olive+cake+waste+as+animal+food
- www.bing.com/search?q=sugarcane+by+products+and+it+is+used+in+ruminant+feed+in+sudan
Top 20 feeds

- **Soybean meal**
- **Wheat bran**
- **Coproa meal and coconut by-products**
- **Alfalfa**
- **Rice bran**
- **Blood meal**
- **Sugarcane molasses**
- **Mango fruit and by-products**
- **Cassava by-products**
- **Palm kernel meal**
- **Maize grain**
- **Cottonseed meal**
- **Guar forage, seed and meal**
- **Sunflower meal**
- **Barley grain**
- **Brewer's grain**
- **Pineapple by-products**
- **Citrus pulp, dried**
- **Banana leaves and pseudostems**
- **Banana peels**

Values from top to bottom: 5,452, 5,359, 5,1, 4,367, 4,321, 4,147, 3,994, 3,993, 3,859, 3,788, 3,362, 2,927, 2,867, 2,846, 2,784, 2,741, 2,633, 2,623, 2,58, 2,395
Potential developments

● Dissemination
 ● Specialized guides or manuals
 • Regional tables
 • Papers or e-books
 • Mobile apps for local needs
 ● Learning tools: booklets, course manuals, quizz...
 ● Feed Forum: questions/answers, suppliers directory...
 ● Development of software for calculation of nutritive value in national unit systems

● Beyond nutritive values...
 ● Environmental database, multi-criteria evaluation, reference for farm system evaluation, sustainable use of biodiversity
Thanks for your attention
See you soon on

www.feedipedia.org

www.facebook.com/feedipedia
twitter.com/feedipedia
Why support Feedipedia

- Feedipedia is a unique, open access resource on feeds and feeding
- Feedipedia will become a go-to technical and scientific reference for many feeds
- Feedipedia is fact-based and neutral, maintained by FAO and European scientific institutions
- Feedipedia will help people to optimize the use of animal feed resources for better animal production and better animal products
Useful information at the bottom of the datasheet

Feed categories

- Other forage plants
- Roots, tubers and by-products
- Plant products and by-products

Citation

Audience for copra meal

- Asia: 55%
- Americas: 13%
- Oceania: 12%
- Europe: 9%
- Africa: 6%
- (not set): 5%
Audience for alfalfa

- Europe: 32%
- Americas: 26%
- Asia: 21%
- Africa: 13%
- Oceania: 4% (not set)

EAAP Meeting - August 27, 2013
Feedipedia: An online encyclopedia of animal feeds

Feedipedia is an open access information system on animal feed resources that provides information on nature, occurrence, chemical composition, nutritional value and safe use of nearly 1400 worldwide livestock feeds. It is managed jointly by INRA, CIRAD, AFZ and FAO.

The main objective of Feedipedia is to provide extension and development workers, planners, project formulators, livestock farmers, science managers, policy makers, students and researchers with the latest scientific information to help them identify, characterize and properly use feed resources to sustainably develop the livestock sector.

This is particularly important in emerging and developing countries.

Sustainable Animal Diets - FAO Survey

Can we move towards “Sustainable animal diets”? Give your opinion by answering this FAO survey until 10 August 2013 in English, French or Spanish. You will receive a report of the survey analysis and a CD-ROM containing FAO publications in the area of feeding, feed and feed safety and other FAO publications. Click here to read more about the survey.