An empirical study of strategies for organic dairy farms in Austria

64th EAAP Meeting
Nantes, France
26th – 30th August, 2013

Stefan Kirchweger
Michael Eder

Institute of Agricultural and Forestry Economics
University of Natural Resources and Life Sciences
Vienna
Map of Austria
Economic strategies in dairy farming

- **High-Output**
 - Decreasing costs (fix costs) through increasing milk yield per farm
 - Increase of milk yield per cow and/or farm growth
 - High level of inputs

- **Low-Input**
 - Decreasing costs through decreasing inputs (less technology, concentrate, ingredients and working units)
 - Grassland based
 - Leads to reduced milk yield per cow
Economic strategies in dairy farming

- Basic conditions determine the selection of a certain strategy
 - Which production factors are limiting?
 - Climate conditions
 - Grassland/arable land
 - Prices for milk and concentrate

- In organic farming the high-output strategy is limited
- Organic farming is closer to low-input strategy
Research questions

? Which strategy can be identified under the most successful farms from bookkeeping data?
 ➢ Cluster analysis

? How do those strategies perform under volatile market conditions?
 ➢ Analysis of the time period 2005-2010
Methodology

- Clusteranalysis (Ward-approach)
 - Groups with similar units
 - Variables:
 - Costs for concentrate per cow
 - Share of grassland
 - Depreciation per livestock unit
 - Costs for hired work per hectare UAA

- Time series analysis
 - Mean comparison from 2005 - 2010
Data

- Voluntarily bookkeeping farms (about 2200 farms)
 - Organic
 - Specialized dairy farms
 - Data from 2005-2010
 - Farm income per family labour more than the average

=> 70 farms
Results from cluster analysis

Structural data

- **Cluster "intensive"** (n=14):
 - UAA = 34.3 ha
 - Milk yield per farm = 6743 t

- **Cluster "extensive"** (n=8):
 - UAA = 32.2 ha
 - Milk yield per farm = 4709 t

Source: Own illustration

UAA = Utilized agricultural area
Results from cluster analysis
Selected inputs

- Cluster "intensive" (n=14): 27.3
- Cluster "extensive" (n=8): 17.7

Source: Own illustration

- Concentrate feed (dag per kg milk)
- Depreciation (1,000 €)
Results from cluster analysis

Income data

Cluster "intensive" (n=14) vs. Cluster "extensive" (n=8)

Source: Own illustration
Results for time series analysis
Indicies for total farm input and output (2005=100)

Source: Own illustration
Results for time series analysis
Indicies for farm income and public funds (2005=100)

Source: Own illustration
Results for time series analysis
Indicies for UAA and dairx cows (2005=100)

Source: Own illustration
UAA = Utilized agricultural area
Conclusions and discussion

- Both strategies are applied under the „best“ farms (number is limited)
- Increasing milk yield is not the only successful strategy
- Strategy selection depends on basic conditions (location, politics,…)
 and strength of the farm and farmer
- Strategies are influenced differently from price fluctuations
- Intensive production needs better risk management
- Both strategies are successful options for farmers in the future
Thank you for your attention!!

Stefan Kirchweger and Michael Eder
Institute of Agricultural and Forestry Economics
University of Natural Resources and Life Sciences, Vienna
Feistmantelstrasse 4, A-1180 Vienna, Austria.
E-Mail: stefan.kirchweger@boku.ac.at
<table>
<thead>
<tr>
<th>Daten</th>
<th>Cluster 1 (n=22)</th>
<th>Cluster 2 (n=21)</th>
<th>Cluster "intensive" (n=14)</th>
<th>Cluster "extensiv" (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Betriebe</td>
<td>22</td>
<td>21</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Milk yield per farm (t)</td>
<td>136</td>
<td>223</td>
<td>159</td>
<td>119</td>
</tr>
<tr>
<td>UAA (ha)</td>
<td>36.4</td>
<td>44.5</td>
<td>34.3</td>
<td>32.2</td>
</tr>
<tr>
<td>Mittelwert von gveproha</td>
<td>116</td>
<td>134</td>
<td>120</td>
<td>133</td>
</tr>
<tr>
<td>Mittelwert von kfkuh</td>
<td>354</td>
<td>552</td>
<td>667</td>
<td>299</td>
</tr>
<tr>
<td>Farm income</td>
<td>54,670</td>
<td>75,297</td>
<td>65,760</td>
<td>60,287</td>
</tr>
<tr>
<td>Mittelwert von ek_if_nak2</td>
<td>31,196</td>
<td>38,517</td>
<td>37,265</td>
<td>31,403</td>
</tr>
<tr>
<td>Mittelwert von milprokuh</td>
<td>5,750</td>
<td>6,255</td>
<td>6,743</td>
<td>4,709</td>
</tr>
<tr>
<td>Mittelwert von tmgve</td>
<td>95.8</td>
<td>89.0</td>
<td>69.7</td>
<td>50.7</td>
</tr>
<tr>
<td>Mittelwert von öpulant</td>
<td>46.0%</td>
<td>39.8%</td>
<td>39.6%</td>
<td>44.0%</td>
</tr>
<tr>
<td>Mittelwert von almant</td>
<td>5.3%</td>
<td>7.5%</td>
<td>7.0%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Mittelwert von afamil</td>
<td>192</td>
<td>117</td>
<td>189</td>
<td>130</td>
</tr>
<tr>
<td>Mittelwert von tmml</td>
<td>30</td>
<td>24</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Mittelwert von samil</td>
<td>291</td>
<td>237</td>
<td>308</td>
<td>216</td>
</tr>
<tr>
<td>Mittelwert von foermil</td>
<td>237</td>
<td>208</td>
<td>302</td>
<td>320</td>
</tr>
<tr>
<td>Concentrate feed (dag per kg milk)</td>
<td>16.2</td>
<td>23.5</td>
<td>27.3</td>
<td>17.7</td>
</tr>
<tr>
<td>Total farm input (€)</td>
<td>89,082</td>
<td>94,975</td>
<td>98,992</td>
<td>49,030</td>
</tr>
<tr>
<td>Total farm output (€)</td>
<td>143,752</td>
<td>170,272</td>
<td>164,752</td>
<td>109,317</td>
</tr>
<tr>
<td>Depreciation (1.000 €)</td>
<td>25.1</td>
<td>23.9</td>
<td>27.7</td>
<td>14.3</td>
</tr>
<tr>
<td>Standardabweichung (Grundgesamtheit) von ek_if_nak2</td>
<td>10,869</td>
<td>12,708</td>
<td>17,520</td>
<td>10,980</td>
</tr>
<tr>
<td>Mittelwert von opul</td>
<td>13,498</td>
<td>15,993</td>
<td>16,641</td>
<td>13,893</td>
</tr>
<tr>
<td>Mittelwert von nak</td>
<td>1.81</td>
<td>1.89</td>
<td>1.86</td>
<td>1.76</td>
</tr>
</tbody>
</table>