Participatory identification of breeding objective traits for two goat breeds of Ethiopia

S. Abegaz1,2, M. Wurzinger1, J. Sölkner1

1BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
2Gondar Agricultural Research Center, Gondar, Ethiopia
Introduction

- Goats have a significant role for Ethiopian smallholder farmers
- Goat genetic improvement programs are undeveloped
- A few attempts of goat genetic improvement through upgrading of local breeds with exotic breeds
- Local genotypes are more adaptive and suitable for the existing environment
• Need of designing appropriate breeding program for sustainable genetic improvement

• Community based breeding program for low input system

• Community participation at all stages of the breeding program is the peculiar feature of community based breeding program

• Designing of breeding programs should consider the trait preferences of the farmers
Objective

• Identify the breeding objective traits of two indigenous goat breeds for designing of community based breeding programs
Study sites

Site one (Metema)

Altitude: 550 to 1608 m
Temperature: 22 to 28°C
Location: 900 km northwest of Addis Ababa
Rainfall: 850 to 1100 mm
Agro ecological zone: Sub moist low land

Site two (Abergelle)

Altitude: 1340 to 2200 m
Temperature: 16 to 27°C
Location: 720 km north of Addis Ababa
Rainfall: 350 - 700 mm
Agro ecology: Dry mid altitude
Production system

- Traditional mixed farming system
- In Metema crop production is more dominant
- In Abergelle goat production is more dominant
- Average flock size
 - In Metema 10 goats per household
 - In Abergelle 50 goats per household
Method

• **Own flock ranking experiment**
 - 60 households from Metema and 30 households from Abergelle areas were visited
 - They were asked to rank their three best and the worst breeding does with in their flock
 - The reasons of ranking and life history of the ranked animals were inquired and recorded
Data analysis

• Frequency procedure of SAS
 - For the relative importance of the preferred traits

• glm procedure of SAS
 - For the traits provided as life history and live weight of the ranked animals
Results: List of preferred traits identified by farmers

- Milk yield
- Body size
- Drought resistance
- Kids growth
- Twinning
- Kidding interval
- Mothering ability
- Weight of kids at birth
- Temperament
- Beauty/Color
- Body length
- Tail length
- Others

Western lowland
Abergelle
Results: Means of the traits for Abergelle does

<table>
<thead>
<tr>
<th>Trait</th>
<th>Rank</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td>6.3<sup>a</sup></td>
<td>4.9<sup>cb</sup></td>
<td>5.9<sup>ab</sup></td>
<td>4.7<sup>c</sup></td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td>32.3<sup>a</sup></td>
<td>30.1<sup>b</sup></td>
<td>30.4<sup>b</sup></td>
<td>25.5<sup>b</sup></td>
</tr>
<tr>
<td>Kidding</td>
<td></td>
<td>5.4<sup>a</sup></td>
<td>3.7<sup>cb</sup></td>
<td>4.4<sup>b</sup></td>
<td>3.1<sup>c</sup></td>
</tr>
<tr>
<td>Kids born</td>
<td></td>
<td>6.7<sup>a</sup></td>
<td>4.3<sup>b</sup></td>
<td>4.6<sup>b</sup></td>
<td>3.1<sup>c</sup></td>
</tr>
<tr>
<td>Kids weaned</td>
<td></td>
<td>6.4<sup>a</sup></td>
<td>3.9<sup>b</sup></td>
<td>3.9<sup>b</sup></td>
<td>1.3<sup>c</sup></td>
</tr>
<tr>
<td>Twinning rate</td>
<td></td>
<td>1.2<sup>a</sup></td>
<td>1.1<sup>a</sup></td>
<td>1.0<sup>c</sup></td>
<td>0.9<sup>c</sup></td>
</tr>
<tr>
<td>Milk yield (l)</td>
<td></td>
<td>0.6<sup>a</sup></td>
<td>0.5<sup>ba</sup></td>
<td>0.4<sup>b</sup></td>
<td>0.2<sup>c</sup></td>
</tr>
</tbody>
</table>
RESULTS: Means of the traits for Western lowland does

<table>
<thead>
<tr>
<th></th>
<th>Rank</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sup>st</sup></td>
<td>2<sup>nd</sup></td>
<td>3<sup>rd</sup></td>
<td>Worst</td>
</tr>
<tr>
<td>Age (Year)</td>
<td>5.5<sup>a</sup></td>
<td>3.9<sup>b</sup></td>
<td>2.9<sup>c</sup></td>
<td>2.6<sup>c</sup></td>
</tr>
<tr>
<td>Body weight (Kg)</td>
<td>34.0<sup>a</sup></td>
<td>31.0<sup>b</sup></td>
<td>27.2<sup>c</sup></td>
<td>24.9<sup>c</sup></td>
</tr>
<tr>
<td>kidding</td>
<td>5.8<sup>a</sup></td>
<td>3.7<sup>b</sup></td>
<td>2.8<sup>c</sup></td>
<td>2.2<sup>c</sup></td>
</tr>
<tr>
<td>kids born</td>
<td>10.7<sup>a</sup></td>
<td>6.1<sup>b</sup></td>
<td>4.1<sup>c</sup></td>
<td>2.8<sup>c</sup></td>
</tr>
<tr>
<td>kids weaned</td>
<td>9.8<sup>a</sup></td>
<td>5.2<sup>b</sup></td>
<td>3.1<sup>c</sup></td>
<td>1.6<sup>d</sup></td>
</tr>
<tr>
<td>Twinning rate</td>
<td>1.8<sup>a</sup></td>
<td>1.6<sup>b</sup></td>
<td>1.4<sup>c</sup></td>
<td>1.2<sup>c</sup></td>
</tr>
</tbody>
</table>
Conclusions

• Diverse attributes as selection criteria were identified

• Variations in the relative importance of breeding objective traits between the different production system

• This method can serve as a tool in identification of breeding objective traits in the areas no recording scheme is developed
Acknowledgements

• Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH)
• Participant farmers in the study

Thank you for your attention!!