Assessment of technical and economic efficiency of French dairy sheep genomic breeding programs

JM. Astruc *

* Institut de l’Elevage / French Livestock Institute - Toulouse, France

Nantes, France, 28 August 2013
Genomic selection: many achievements, mainly in dairy cattle, over the last decade

- Great expectations in increase of genetic gain
 - Good genomic accuracy
 - Dramatic reduction of generation interval (selection decisions made early in the life of bulls)
- Genotyping affordable regarding animal value & progeny-testing cost

→ Genomic breeding programs cost-effective

And in dairy sheep?
French dairy sheep breeding programs

Lacaune
AI 85% in nucleus
450 rams progeny-tested / yr
35 daughters / rams

Red-Faced Manech
AI 55% in nucleus
150 rams progeny-tested / yr
30 daughters / rams

<50 rams progeny-tested / yr
Progeny testing in dairy sheep

Illustration with a Lacaune breeding company

Progeny test (225 rams)

Categories of AI rams within flock

- 6-month-old rams
- 1,5-yr-old rams
- 2,5-yr-old rams
- 3,5-yr-old rams
- 4,5-yr-old rams
- 5,5-yr-old rams

700 rams in AI center

Rel > 0.7

Rel 0.2 – 0.3

6-months-old rams

Few reduction of generation interval to be expected in dairy sheep
R&D programs on genomic selection in French dairy sheep

Lacaune

Reference population
2900 rams

Pyrenean breeds

Reference population
(Red-Faced Manech)
1300 rams

GEBV: moderate gain in accuracy (15-40% depending on trait and breed)

→ Genomic reliability intermediate (0.4 - 0.5) between parent average and progeny-testing
Constraints of AI in dairy sheep

Fresh semen \rightarrow Limited power of diffusion of rams

AI period highly seasoned

\downarrow

700 rams required in AI center to supply AI demand

\Rightarrow No more lay-off = hope to reduce number of rams
Challenge: is it possible to get at least a similar genetic gain without extra costs?
Modeling a genomic program in dairy sheep
Illustration with a Lacaune breeding company

Genotyped candidates

Maintain ref. pop.
Diffusion sires
of rams & ewes

Range of genomic precision
(0.4 ; 0.45 ; 0.5)

Range of semen production

Age at culling :
{2.5;3.5;4.5}

Genomic selection pressure :
{1/3;1/4;1/5;1/6;1/7}

Selection pressure after progeny-testing :
{1;0.9;0.8;0.7}
In most cases, genomic selection increases genetic gain.

Genetic gain increased in (almost) all genomic scenarios.

Any genomic pressure cannot be applied regarding genotyping costs and logistical reasons.

→ Increase in genetic gain less dramatic than in dairy cattle.
Number of AI rams reduced in all designs

Genomic vs conventional scheme:

Number of rams in AI center dropped by 40%

Number of rams per cohort (rams required to maintain ref.pop.) fell by half

Number of sires of rams increased more than 2-fold

Less rams to manage... costs savings
Economic balance: taking into account cost of genotyping & costs of keeping rams

Scenario: culling 4.5, p=0.7
Conclusion

A genomic program may be efficient (at least in Lacaune and Red-Faced Manech) : slightly higher genetic gain ; less rams in AI center to offset genotyping costs.

With current cost of genotyping : apply genomic pressure of \(\frac{1}{2} \) to \(\frac{1}{4} \).

Key factors for cost-efficiency : cost of genotyping and semen production of the rams.

Genomic breeding program :

- more flexibility
- tool for better management of inbreeding
Assessment of technical and economic efficiency of French dairy sheep genomic breeding programs

JM. Astruc et al.