Introduction
Enhancing healthy fatty acids (FAs) in ewe milk fat is an important objective in terms of improving the nutritional value of these foods for the consumer. Several nutritional strategies have been studied to improve the FA profile of milk, mostly by including in the ewe diet unsaturated fats. However, unsaturated fats generally cause a shift in the rumen BH pathways with increases in ruminal outflow of specific trans-FAs (e.g. \textit{trans} 10 18:1), which leads to a reduction in milk fat synthesis in the mammary gland. Feeding animals with fatty acids (FAs) in the form of calcium soaps from different oils could prevent, even if only partially, biohydrogenation of PUFA in the rumen and reduce the proportion of SFAs and trans-FAs in the milk.

The objective of this study was to evaluate the effects of different calcium soaps of FAs (CSFAs) of olive oil and fish oil in the diet of Churra ewes during the first month of lactation on milk performance and fatty acid profile.

Results
Individual milk yield and composition was recorded weekly during the first month of lactation.
Fat, protein and total solids content of milk were analysed using a MilkoScan-400 analyser.
Milk fatty acid composition of individual samples from weeks 2 and 4 were analysed by gas chromatography according to Luna et al. (2008).
Data were evaluated by the MIXED procedure of SAS.

Conclusions
The supplementation of ewe diets during the first month of lactation with different CSFAs did modify the FA profile of milk fat. CSFAs of fish oil produced more important changes than the supplementation of the ewe diet with CSFAs of olive oil. Although in the assayed conditions, the addition of CSFAs of fish oil decreased the milk fat content, it also significantly increased healthy FAs, such as n-3 PUFAs and rumenic acid (\textit{cis 9 trans} 11 C18.2). Moreover, this took place without a simultaneous increase in either SFAs or \textit{trans}-FAs such as \textit{trans} 10 18:1.

Acknowledgments: This work has been supported by the Junta de Castilla y León (project VA058A07).