EFFECT OF STOCKING RATE AND COW LACTATION STAGE ON NITROGEN BALANCE OF GRAZING DAIRY COWS

A.I. Roca-Fernández*, D. Báez-Bernal and A. González-Rodríguez

Agrarian Research Centre of Mabegondo (CIAM), INGACAL, Xunta de Galicia, Abegondo 10, 15080, La Coruña, Spain. *anairf@ciam.es
TABLE OF CONTENTS

I. Background
II. Introduction
III. Objectives
IV. Material and Methods
V. Results
VI. Conclusions
I. BACKGROUND

The **main N input at a cow level is via feed:**

To improve grazing dairy management systems by applying appropriate stocking rates (SR) on the farm while **decreasing levels of supplementation at pasture according to cows’ lactation stage (LS).**

Where is feed protein?

N balance at a cow level
II. INTRODUCTION

There are **important biological** and **economical reasons** to reduce N losses and **improve its utilization in dairy cattle**:

- Excessive N intake causes **low reproduction** and **low efficiency** in BW.
- Low efficiency of protein utilization in grazing dairy systems.

Improved feed N utilization feeding efficiency can be got by:

- Feeding dairy cows according to their production levels (grouping animals according to lactation stage).
- Using **properly balanced diets** (the goal is maximize protein utilization by making sure that total protein is not overfed and rumen degradable and un-degradable protein is balanced).
III. OBJECTIVES

To investigate the effect of stocking rate (SR) and cows’ lactation stage (LS) on animal N-balance in two periods (P) of supplementation at pasture.

To determine the N-conversion rate from $\sum N$ inputs (grass, grass/maize silage and concentrate) to $\sum N$ outputs (milk and body weight gain) in order to decrease the N-surplus by improving efficiency of N utilization at the animal level.
A randomized block design was established by a 2×2 factorial arrangement of 4 treatments (LE, LM, HE and HM): two stocking rates and two lactation stages.

ANIMALS & PASTURES
HF cows ($n=72$) grazing rotationally on ryegrass + legume pastures.

SWARD & ANIMAL DETERMINATIONS
- **Pasture:** pre-/post-grazing SH, HM, DHA, SR and sward quality (CP, fibers, WSC and OMD) determined by NIRS.
- **Animal:** BW, BCS, MY and milk quality (protein).
- **ΣN inputs:** Total intake/Nutritive value G+S+C.
- **ΣN outputs:** MY (daily) and BW (weekly).
- **ΣN inputs - ΣN outputs:** N excretion (urine + faeces).
V. RESULTS

Animal performance and milk quality responses

<table>
<thead>
<tr>
<th>Herds</th>
<th>Cows (number)</th>
<th>Lactation (days)</th>
<th>Stocking rate (cows/ha)</th>
<th>Milk (kg/cow/day)</th>
<th>Protein (g/kg DM)</th>
<th>Fat (kg)</th>
<th>BW (kg)</th>
<th>BCS (1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>22</td>
<td>33<sup>a</sup></td>
<td>4.3<sup>a</sup></td>
<td>24.9<sup>a</sup></td>
<td>29.2<sup>a</sup></td>
<td>35.6<sup>a</sup></td>
<td>573<sup>ab</sup></td>
<td>2.8<sup>a</sup></td>
</tr>
<tr>
<td>HE</td>
<td>22</td>
<td>28<sup>a</sup></td>
<td>5.8<sup>b</sup></td>
<td>26.5<sup>a</sup></td>
<td>28.7<sup>a</sup></td>
<td>36.3<sup>ab</sup></td>
<td>564<sup>a</sup></td>
<td>2.7<sup>a</sup></td>
</tr>
<tr>
<td>LM</td>
<td>14</td>
<td>139<sup>b</sup></td>
<td>3.6<sup>a</sup></td>
<td>20.4<sup>b</sup></td>
<td>30.6<sup>b</sup></td>
<td>39.3<sup>b</sup></td>
<td>600<sup>b</sup></td>
<td>2.9<sup>b</sup></td>
</tr>
<tr>
<td>HM</td>
<td>14</td>
<td>140<sup>b</sup></td>
<td>4.6<sup>b</sup></td>
<td>18.9<sup>b</sup></td>
<td>31.6<sup>b</sup></td>
<td>36.8<sup>ab</sup></td>
<td>574<sup>ab</sup></td>
<td>3.0<sup>b</sup></td>
</tr>
</tbody>
</table>

E lactacion stage (31) cows showed lower DIM than **M lactation stage** (140) cows.

Imposed SR were higher (P<0.05) in cows at H (5.2 cows/ha) than at L (3.9 cows/ha) SR.

MY (kg/cow/day) was higher (P<0.05) in cows at E (25.7) than at M **lactation stage** (19.6).

Milk protein, fat, BW and BCS were higher (P<0.05) in cows at M than at E **lactation stage**.
V. RESULTS

Total feed intake and sward quality characteristics

<table>
<thead>
<tr>
<th>Herds</th>
<th>Pasture DM intake (kg DM/cow/day)</th>
<th>Grass silage DM</th>
<th>Maize silage DM</th>
<th>Concentrate DM</th>
<th>CP (%)</th>
<th>ADF (g/kg DM)</th>
<th>NDF (g/kg DM)</th>
<th>WSC (g/kg DM)</th>
<th>IVOMD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>18.8a 14.2a 1.5 0 1.7 0</td>
<td>4.1a 1.8a</td>
<td>17.3a</td>
<td>131a 275a 487a</td>
<td>185a</td>
<td>749a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE</td>
<td>16.4a 18.2a 1.5 0 1.7 0</td>
<td>4.1a 1.8a</td>
<td>16.9b</td>
<td>149ab 261b 475b</td>
<td>193a</td>
<td>759ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>25.9b 21.0b 1.8 0 2.0 0</td>
<td>2.6b 0b</td>
<td>18.5a</td>
<td>146ab 278a 505a</td>
<td>74b</td>
<td>757ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM</td>
<td>21.0b 17.6b 1.8 0 2.0 0</td>
<td>3.3b 0b</td>
<td>16.7b</td>
<td>157b 266b 483ab</td>
<td>177b</td>
<td>790b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pasture and silage DM intake were higher (P<0.001) in cows at M than at E lactation stage.

Concentrate DM intake was higher (P<0.001) in cows at E than at M lactation stage.

DM (16.8 vs. 18%), ADF (264 vs. 277 g/kg DM) and NDF (479 vs. 496 g/kg DM) content were lower (P<0.05) in cows managed at H than at L stocking rate.

WSC were higher in cows managed at E than at M lactation stage.
V. RESULTS

$\sum N$ inputs (G+S+C) and $\sum N$ outputs (M+BW) (g N/cow/day)

$\sum N$ inputs from concentrate were higher ($P<0.01$) in cows managed at H than at L stocking rate.

$\sum N$ inputs from concentrate and $\sum N$ outputs from milk were higher ($P<0.001$) at E than at M lactation stage.
V. RESULTS

ΣN inputs, ΣN outputs and N excretion (g N/cow/day)

Groups¹	LE	HE	LM	HM	Periods²	P1	P2	P1	P2	P1	P2	P1	P2	LS	SR	P	LSxSR	LSxP	SRxP	LSxSRxP	
Grass						68	67	83	95	105	95	83	87								
Grass silage						26	0	30	0	31	0	31	0								
Maize silage						17	0	20	0	20	0	21	0								
Concentrate						121	51	121	56	74	3	97	3								
ΣN inputs						232	118	254	151	230	98	232	90								
Milk output						143	90	150	101	124	78	122	73								
Body weight gain						-6	-3	10	-1	10	7	8	-2								
ΣN outputs						137	87	160	100	134	85	130	71								
ΣN inputs-ΣN outputs						95	30	94	50	96	12	102	18								
N excretion						442	36	356	119	466	-6	576	41								

¹Groups: Stocking Rate (L, Low vs. H, High) x Stage of Lactation (E, Early vs. L, Late) ²Periods of the Grazing Season (P1, March-April vs. P2, May-August); ³Significance:*** (P<0.001); ** (P<0.01); * (P<0.05); ns, not significant.

ΣN inputs from silage (G + M) and concentrate were higher (P<0.001) in **P1** than in **P2**.

ΣN outputs from milk were higher (P<0.001) in **P1** than in **P2**.

ΣN inputs - ΣN outputs and **N excretion** were also higher (P<0.001) in **P1** than in **P2**.

No differences were found between **LS** and **SR** for **ΣN inputs - ΣN outputs** and **N excretion**.
VI. CONCLUSIONS

1.- The results pointed the interest of evaluating cows’ lactation stage and stocking rate on ΣN inputs and ΣN outputs to minimize N-losses at the animal level.

2.- Higher ΣN inputs and ΣN outputs were found in cows at early than at middle lactation stage.

3.- Higher ΣN inputs and ΣN outputs were reached at high than at low stocking rate.

4.- ΣN inputs and ΣN outputs were higher in P1 than in P2 and supplementation (concentrate + silage) highly increased N-excretion in grazing dairy cows.
ACKNOWLEDGMENTS

THANK YOU VERY MUCH FOR YOUR ATTENTION

ANY QUESTIONS? ...
EFFECT OF STOCKING RATE AND COW LACTATION STAGE ON NITROGEN OF GRAZING DAIRY COWS

A.I. Roca-Fernández*, D. Báez-Bernal and A. González-Rodríguez

Agrarian Research Centre of Mabegondo (CIAM), INGACAL, Xunta de Galicia, Abegondo 10, 15080, La Coruña, Spain. *anairf@ciam.es