Efficient fragmentation of animal trade networks by targeted removal of central farms

Kathrin Büttner¹,², Joachim Krieter¹, Arne Traulsen² and Imke Traulsen¹

¹ Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
² Max Planck Institute for Evolutionary Biology, Plön, Germany

64th Annual EAAP Meeting Nantes, France, August 26th to 30th, 2013
Session 33, abstract number 16908, kbuettner@tierzucht.uni-kiel.de
Introduction

• Extensive economic losses in the livestock industry by animal diseases
• **Transport of live animals:** Major risk factor for the spread of infectious diseases
• Source of classical swine fever virus infection in German domestic pig herds from 1993 – 1998 (Fritzemeier et al., 2000)

→ Secondary and follow-up outbreaks
Introduction

• Network view of animal movements
  → Farms: nodes
  → Trade contacts: edges

• Network analysis
  → Detection of central or important farms in the network
  → Characterisation of network topology
Introduction

• **Network view of animal movements**
  → Farms: nodes
  → Trade contacts: edges

• **Network analysis**
  → Detection of central or important farms in the network
  → Characterisation of network topology

• **Aim of the study**
  → To characterize the changes in the network topology by successive removal of the most central farms in the trade network
  → To evaluate which centrality parameter is the most suitable measure for a rapid fragmentation of the trade network
  → ** Interruption of the chain of infection**
- Trade network of the pork supply chain from a producer community in Northern Germany

- **Observation period:**
  June 2006 to May 2009

- **Transported livestock:**
  Piglets, pigs, sows and boars

- **Three time intervals**
  → 1 Three-year network
  → 3 Yearly networks
  → 36 Monthly networks

- **Network properties:**
  Directed & static
### Materials and methods - Data basis

#### Number of farms and trade contacts in the different time intervals

<table>
<thead>
<tr>
<th></th>
<th>Three-year network</th>
<th>Yearly networks</th>
<th>Monthly networks</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Number of farms</strong></td>
<td>483</td>
<td>322 (Mean)</td>
<td>129 (Mean)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>319 (Min)</td>
<td>107 (Min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>323 (Max)</td>
<td>148 (Max)</td>
</tr>
<tr>
<td><strong>Number of trade contacts</strong></td>
<td></td>
<td>1545 (Dynamic Mean)</td>
<td>427 (Dynamic Mean)</td>
</tr>
<tr>
<td>Dynamic</td>
<td>4635</td>
<td>1522 (Dynamic Min)</td>
<td>359 (Dynamic Min)</td>
</tr>
<tr>
<td>Static</td>
<td>926</td>
<td>468 (Static Min)</td>
<td>134 (Static Min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>449 (Static Max)</td>
<td></td>
</tr>
</tbody>
</table>

**Dynamic** refers to changes in the network over time, while **Static** refers to fixed connections.
• **Degree**: Number of direct trade contacts
  → Ingoing trade contacts: In-degree
  → Outgoing trade contacts: Out-degree

• **Infection chain**: Number of direct and indirect trade contacts regarding the chronological order of the trade contacts
  → Ingoing trade contacts: Ingoing infection chain
  → Outgoing trade contacts: Outgoing infection chain
• Centrality parameters based on the outgoing trade contacts
  
  (Out-degree & outgoing infection chain)

  → Stable characteristics within time

  → In all time intervals the same farms are the most central

• Centrality parameters based on the ingoing trade contacts
  
  (In-degree & ingoing infection chain)

  → Strong fluctuations in the ranking of the farms

  → Small range of the centrality parameters
Materials and methods - Network resilience

- Properties of networks with a right-skewed distribution of the centrality parameters
  - Random removal: Highly resistant
  - Targeted removal: Highly vulnerable

- Evaluation criteria for the percolation process
  - Number of holdings in the largest network component depending on the number of removed holdings
Results - Targeted removal

Three-year network: In-degree & out-degree

Reduction of the size of the largest component by more than 75%:
Number (Proportion) of removed farms

→ In-degree:
   220 (46 %)

→ Out-degree:
   31 (6 %)
Three-year network: Ingoing infection chain & outgoing infection chain

Reduction of the size of the largest component by more than 75%:
Number (Proportion) of removed farms

→ Ingoing infection chain:
362 (75 %)

→ Outgoing infection chain:
32 (7 %)
Results - Targeted removal

Yearly networks

Monthly networks
Results - Optimal combination

Targeted removal in comparison to the optimal combination

Improvement in % of network decomposition by removal of the optimal combination of the first three farms in comparison to the targeted removal of farms regarding the calculated centrality parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Three-year network</th>
<th>Yearly networks</th>
<th>Monthly networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-degree</td>
<td>20.5</td>
<td>30.7</td>
<td>19.2</td>
</tr>
<tr>
<td>Out-degree</td>
<td>1.0</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Ingoing infection chain</td>
<td>20.5</td>
<td>30.6</td>
<td>19.9</td>
</tr>
<tr>
<td>Outgoing infection chain</td>
<td>7.9</td>
<td>5.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Conclusion

• **Stable characteristics** for all observed time periods
  → Centrality parameters based on outgoing trade contacts

• **Right-skewed distribution** for all calculated centrality parameters

• **Appropriate method to interrupt the chain of infection:**
  Successive removal of the most central farms regarding the parameters
  → **Out-degree**
  → **Outgoing infection chain**

• The targeted removal by out-degree was closest to the removal of the optimal combination

Preventive and control measures should consider the parameters based on the outgoing trade contacts
Thank you for your attention! This project is kindly financed by the DFG.