Relations between farm size, production intensity and sustainability of dairy farms in Wallonia

T. Lebacq1,2, D. Stilmant2, P. Baret1

1Université catholique de Louvain, Louvain-la-Neuve, Belgium
2Centre wallon de Recherches agronomiques, Libramont, Belgium

Nantes, 28th August
EAAP 2013
The dairy sector has undergone structural changes

During the past 30 years, the dairy sector has been facing:

- a decrease in the **number** of farms
- an increase of their **size** (area, dairy herd, milk production)

→ Associated with a specialisation and an intensification of farming systems

Stakeholders of the Walloon dairy sector have **opposite perceptions** about the sustainability of these changes.

→ Analysis of the relations between farm size, production intensity and sustainability.
We combined farm classification and regression methods

We used a sample of 381 specialised dairy farms (2008) to analyse the relations between:

- Farm size: total milk production
- Intensity: milk production per hectare
- Economic and environmental indicators

We combined two methods:

- Farm classification depending on size and intensity and comparison of these classes
- Linear and logarithmic regression ($R^2 > 0.2$)
Our sample included farms with a diversity of performances.

Dim.1 is mainly correlated with environmental performances.

Dim.2 is highly correlated with gross operating surplus per work unit.

24% of farms combined relatively high environmental and economic performances.
The analysis highlighted three main results

Relations between farm size and sustainability indicators

Relations between farm intensity and sustainability indicators

Comparison of size and intensity classes in terms of economic and environmental performance
Gross operating surplus tended to increase with the farm size

$R^2 = 0.3$

- \uparrow dairy cows/WU
- \uparrow gross product/WU
- \uparrow gross operating surplus/WU
- even if \uparrow variable costs/WU

These relations are logarithmic

- 200 000 l to 300 000 l: $+ 13 000 \, \text{€/FWU} \implies + 6.5 %$
- 600 000 l to 700 000 l: $+ 5000 \, \text{€/FWU} \implies + 0.8 %$

Introduction
Objective and methods
Results
Conclusions
The analysis highlighted three main results

- Relations between farm size and sustainability indicators

- **Relations between farm intensity and sustainability indicators**

- Comparison of size and intensity classes in terms of economic and environmental performance
Intensity affected economic indicators expressed per unit of product

↑ intensity:
- ↓ fixed costs/1000 l
- ↓ production costs/1000 l

→ « economies of scale »

Logarithmic relation: only low intensive farms (< 6000 l/ha) had higher production costs per 1000 l.
Low intensive farms had higher gross operating surpluses per 1000 l

Low intensive farms (< 6000 l/ha) had:

- a higher milk price
- more subsidies/1000 l

R² = 0.2

30 % of low intensive farms are organic farms
Intensity affected energy consumption and nitrogen surplus per hectare

\[R^2 = 0.6 \]

\[R^2 = 0.4 \]

↑ intensity:
- \(\uparrow \) **inputs consumption** per hectare (animal feeding and mineral fertilisers)
- \(\uparrow \) **indirect energy** consumption per hectare
- \(\uparrow \) **nitrogen inputs** per hectare

No significative relations between intensity, energy consumption and nitrogen surplus per 1000 l.
The analysis highlighted three main results

Relations between farm size and sustainability indicators

Relations between farm intensity and sustainability indicators

Comparison of size and intensity classes in terms of economic and environmental performance
Farm classes were defined from size and intensity thresholds

- **Size thresholds**
 - 0 – 400 000 l : S
 - 400 000 – 600 000 l : M
 - > 600 000 l : L

- **Intensity** threshold
 - < 6000 l/ha : i-
 - ≥ 6000 l/ha : i+

Introduction

Objective and methods

Results

Conclusions
‘Extreme’ structures had opposite economic and environmental performances.

Structures li^+ and si^- seemed to inhibit farms to combine relatively good economic and environmental performances.

- $li^+ : eco^+ / envi^{-}$
- $si^+ : envi^+ / eco^{-}$

Introduction

Objective and methods

Results

Conclusions
Size and intensity had various impacts on farm sustainability

This data-based analysis led to conclude that:

- Economic relations were logarithmic \(\rightarrow \) increasing size/intensity had more impact on smaller/less intensive farms.
- Environmental performances per hectare decreased in a linear way with intensity.
- Li+ and si- farms were not appropriate structures to reconcile good economic and environmental performance.

\(\rightarrow \) Identification of optimum farm size and intensity to have good economic performance without having serious environmental impact.

All relations were characterized by a great diversity \(\rightarrow \) within each class, there are some areas of improvement for sustainability performance.
« The most universal quality is diversity. »
Michel De Montaigne