Animal breeding and ethical values

Marie, M.¹,², Gandini, G.³

¹INRA, SAD-ASTER, 662 avenue Louis Buffet, 88500 Mirecourt, France
²Université de Lorraine, ENSAIA, 2 avenue de la Forêt de Haye, 54505 Vandoeuvre lès Nancy, France
³Università degli Studi di Milano, Dipartimento DIVET, Facoltà di Medicina Veterinaria, Via Celoria 10, 20133 Milano, Italy

michel.marie@mirecourt.inra.fr
Breeding implies actions on the genome of a population in order to keep it stable (homozygous lines, cloning) or to modify it (selection, crossbreeding), which can be combined with reproductive techniques such as A.I., E.T., I.V.F., transgenesis, cryopreservation, semen/embryo sexing.
Breeding: timeline

Computing
- Statistical methods
- Bio-informatics
 - Gene mapping

Molecular Biology
- DNA, RNA, Proteins ...

Bio-Engineering
- Genomic selection

Genetic Selection
- Breeds
- Indexes

Heterosis

Breeding
- Male line
- Female line

Sex selection

Artificial insemination

Cryopreservation

Embryo transfer

In vitro fertilization

Transgenesis

Nuclear transfer

Marker-assisted selection

Cloning
- Genetic modification
- Young stock
- Female line

EAAP 64th Annual Meeting, Nantes, France, August 26th-30th, 2013
Actors in breeding: from local to global

- farmers
- local A.I. centre
- local breeding association
- mating station
- breeding organisms
- breeding companies
- research organisations
- biotechnology companies
<table>
<thead>
<tr>
<th>Cases and values</th>
<th>Welfare</th>
<th>Autonomy</th>
<th>Justice</th>
<th>Intrinsic value</th>
<th>Integrity</th>
<th>Naturalness</th>
<th>Caution</th>
<th>Aesthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic selection</td>
<td>breeding goals, blind hens, featherless chicken, polled ruminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>artificial insemination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>embryo transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in vitro fertilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex selection</td>
<td>calves, chicken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genomic selection</td>
<td>breeding goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transgenesis</td>
<td>production animals (transgenic fish), transplantation, bio-pharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloning</td>
<td>meat cattle competition horses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Genetic selection and breeding goals

- Increase of productivity: negative effects on health and welfare

- Metabolic disorders, lameness, fertility
- Leg weakness, osteochondrosis

Welfare, autonomy, justice

Genetic selection and breeding goals

- Increase of productivity: major alterations
 - Behaviour
 - Blind hens
 - Featherless chickens
 - Polled cattle

Gjerris & Sandoe (2006)
Fraser (2001), Wells (2012)
Gottards (2011), King-Eveillard (2013)
Intrinsic value

• **T. Regan** (1983):
 - Animals have beliefs, desires, perceptions which make them *ends-in-themselves*.
 - They have *direct rights*, and human have direct duties towards their well being

• **P. Taylor** (*Respect for nature*, 1986):
 - Animals and living beings have *inherent worth* (their life)
 - for this they *matter morally*

• **Animal Health & Welfare Act (NL, 1992)**

 "Any right accorded by or pursuant to this Act shall be exercised in recognition of the *intrinsic value* of animal life"
Integrity as a value

- Animal **integrity**: « the wholeness of the animal and the species-specific balance of the creature, as well as the animal’s capacity to maintain itself independently in an environment suitable to the species »

B. Rutgers (1999)

Christiansen (2000), Bovenkerk (2002)
Naturalness as a value

The value of naturalness refers to a basic respect for the intrinsic value of nature, i.e., the value nature has, independent of the benefits it may have for humans. This manifests itself in three ways:

(1) in the use of natural substances,
(2) in respecting the self-regulation of living organisms and ecosystems
(3) in respecting the characteristic (species-specific) nature of living organisms.

Macnaghten (2004)
Cases and values

<table>
<thead>
<tr>
<th>Genetic selection</th>
<th>breeding goals, blind hens, featherless chicken, polled ruminants</th>
</tr>
</thead>
</table>

Welfare Autonomy Justice Intrinsic value Naturalness Caution Aesthetics

<table>
<thead>
<tr>
<th>Welfare</th>
<th>Autonomy</th>
<th>Justice</th>
<th>Intrinsic value</th>
<th>Naturalness</th>
<th>Caution</th>
<th>Aesthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Horned

<table>
<thead>
<tr>
<th>Horned</th>
<th>Well-Being</th>
<th>Autonomy</th>
<th>Justice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deprived

<table>
<thead>
<tr>
<th>Deprived</th>
<th>Well-Being</th>
<th>Autonomy</th>
<th>Justice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polled

<table>
<thead>
<tr>
<th>Polled</th>
<th>Well-Being</th>
<th>Autonomy</th>
<th>Justice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Genetic selection through A.I.

- Biodiversity (intra-breed, inter-breed)
- Health risks

Olson (2004)
McArther (2006)
Boonen (2009)
Genetic selection through Embryo Transfer

• Positive:
 - Better genetic improvement
 - Access to the embryo
 - Genetic heritage conservation
 - International exchanges

• Negative:
 - Welfare issues (surgical method in some species)
 - Hormonal treatments
 - Unnaturalness (organic production)
Genetic selection through I.V.F.

• Steps
 - Ovum pick-up
 - Maturation, fertilization, culture, transplantation

• Drawbacks
 - Success rate: 4% of oocytes to birth
 - High offspring weight (big calf syndrome)

<table>
<thead>
<tr>
<th>Welfare</th>
<th>Autonomy</th>
<th>Justice</th>
<th>Intrinsic value</th>
<th>Integrity</th>
<th>Naturalness</th>
<th>Caution</th>
<th>Aesthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>A</td>
<td>J</td>
<td>IV</td>
<td>I</td>
<td>N</td>
<td>C</td>
<td>Ae</td>
</tr>
</tbody>
</table>

Genetic selection | in vitro fertilization

| x | x | x | x | x | x |
Genomic selection

• Breeding goals?
 - Production–related traits
 - Meat quality
 - Functional food
 - Disease resistance
 - Environment-friendly animals

Jacobs (2003)
Twine (2006)
Mark & Sandoe (2010)

Goddard (2007, 2009)
Hayes et al. (2013)

<table>
<thead>
<tr>
<th>Welfare</th>
<th>Autonomy</th>
<th>Justice</th>
<th>Intrinsic value</th>
<th>Integrity</th>
<th>Naturalness</th>
<th>Caution</th>
<th>Aesthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic selection</td>
<td>breeding goals</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

EAAP 64th Annual Meeting, Nantes, France, August 26th-30th, 2013
Genetic breeding through transgenesis

Uses: (Frewer, 2013)
- Production efficiency
- Bio-pharmaceuticals
- Xenotransplantation

Low efficiency (Eyestone, cattle, 1999)
- microinjection: 36500
- transfers: 1470 (= 4%)
- births: 226 (15% = 0.60%)
- transgenic: 18 (8% = 0.05%)
- Transmission: 3 to 54%

Issues:
- Animal welfare
- Environmental effects
- Autonomy
- Intrinsic value
- Integrity
- Naturalness
Genetic breeding through transgenesis

<table>
<thead>
<tr>
<th>Transgenesis</th>
<th>production animals, transplantation, bio-pharmaceuticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare</td>
<td>X</td>
</tr>
<tr>
<td>Autonomy</td>
<td>X</td>
</tr>
<tr>
<td>Justice</td>
<td>X</td>
</tr>
<tr>
<td>Intrinsic value</td>
<td>X</td>
</tr>
<tr>
<td>Integrity</td>
<td>X</td>
</tr>
<tr>
<td>Naturalness</td>
<td>X</td>
</tr>
<tr>
<td>Caution</td>
<td>X</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>X</td>
</tr>
</tbody>
</table>

Genetic breeding through cloning

Uses: (Niemann, 2012)
- identical production animals (e.g. meat)
- reproduce outstanding animals (e.g. horse)
- use in selection schemes
- reproduce transgenic animals
Genetic breeding through cloning: drawbacks

Low efficiency

- oocyte enucleation: 60-92%
- electro-fusion: 75-90%
- activation: 60-80% 40%
- blastocyst: 20-40%
- pregnancy: 20-30% 4%

Postnatal mortality (Chavatte-Palmer 2004)

- Large offspring syndrome: 33%
- Thymus atrophy: 15%
- Kidney lysis: 11%
- Internal haemorrhage: 11%
- Sudden death: 7%

de Boer (1995)
Gjerris & Sandoe (2005, 2007)
Gonzales (2011)
Genetic breeding through cloning

- identical production animals (e.g. meat)
- reproduce outstanding animals (e.g. horse)
- use in selection schemes
- reproduce transgenic animals

<table>
<thead>
<tr>
<th>Cloning</th>
<th>W</th>
<th>A</th>
<th>J</th>
<th>IV</th>
<th>I</th>
<th>N</th>
<th>C</th>
<th>Ae</th>
</tr>
</thead>
<tbody>
<tr>
<td>meat cattle competition horses transgenic clones</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Cases and values

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>W</th>
<th>A</th>
<th>J</th>
<th>IV</th>
<th>I</th>
<th>N</th>
<th>C</th>
<th>Ae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic selection</td>
<td>breeding goals, blind hens, featherless chicken, polled ruminants</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>artificial insemination</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>embryo transfer</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in vitro fertilization</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex selection</td>
<td>calves, chicken</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genomic selection</td>
<td>breeding goals</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transgenesis</td>
<td>production animals, transplantation, bio-pharmaceuticals</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloning</td>
<td>meat cattle competition horses transgenic clones</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ethical tools

The Ethical Matrix

The Reflexive Equilibrium Method
B. Rutgers (2006)
Conclusions

Enhanced requirement for ethical analysis taking into account pertinent values

Thank you for your attention

Efficiency

Large impact

Quickness

Computing

Statistical methods

Bio-informatics

Molecular biology

Bio-engineering

Genomic selection

Marker-assisted selection

Nuclear transfer

Transgenesis

In vitro fertilization

Embryo transfer

Cryopreservation

Artificial insemination

Invasiveness

Heterosis

Genetic selection