An Integrated Tool to Assess the Functional Impact of SNPs

Peter F. Stadler

Bioinformatics Group, Dept. of Computer Science &
Interdisciplinary Center for Bioinformatics,
University of Leipzig
Max Planck Institute for Mathematics in the Sciences
RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology
Institute for Theoretical Chemistry, Univ. of Vienna (external faculty)
Center for non-coding RNA in Technology and Health, U. Copenhagen
The Santa Fe Institute (external faculty)

Nantes, 29 Aug 2013
Diverse Effects of SNPs

Aim within QUANTOMICS Identify likely *causal* polymorphisms by quantifying molecular effects of substitutions on genome-wide scales. **Annotation dependent!**

- changes of amino acid sequences
 - only 1.5% of the genome code for proteins
 - well-established tools are available for quantifying amino acid substitutions on protein structures (e.g. SIFT)
- changes in RNA structures
- changes in splice sites can alter gene structures
- changes in promoter and enhancer sites
- changes in microRNA target sites can alter post-transcriptional regulation

Integration into a single pipeline *SNPpredict ongoing*
Idea: Use experimentally detected splice sites from RNAseq data to identify potentially relevant splice junctions.

Consider all SNPs falling in a ± 3 window of the splice sites of these splits.

Score sequence of acceptor and donor splice sites using the MaxEntScan method before and after insertion of respective SNP.

High changes of the MaxEnt score (> 7.7) indicate putative loss or gain of the splice junction.

Extensive processing and comparative analysis of RNAseq data:

1. Collection of appropriate data sets from the “Avian RNAseq consortium” and from diverse mammalian sources.
2. Mapping, quality control and merging of RNAseq data.
3. Use information from split reads to identify splice junctions: $\approx 320k$ detected splits after stringent filtering.
Collect human microRNA target sites from starBase
http://starbase.sysu.edu.cn/
Transfer to cattle coordinates using UCSC liftOver
Overlap SNPs with potential target sites
Putative promoter/enhance sites: consider overlap with high local conservation scores in unannotated regions
Effect of point mutations depends strongly on position and substitution

Quantification of structural difference
- fraction of different base pairs
- distance measures between base pairing matrices
- distances between vectors of probabilities of pairing for individual bases
- local, regional, and global measures
RNA Structure Distances

\[d_{\text{max}}(P, P') \]

\[d_{\text{max}}(\pi, \pi') \]

\[r_{\text{min}}(\pi, \pi') \]

\[d_{\text{max}}(\xi<>, \xi<>^*) \]

\[r_{\text{min}}(\xi<>, \xi<>^*) \]

\[\delta \]
Detect Large Effects

RNAsnp computes empirical p-values for observed structure changes.

p-values obtained from extensive precomputed tables

only very few SNPs with known structural effects for validation

available as a stand-alone webservice

http://rth.dk/resources/rnasnp/
SNP prioritization

Aim: Prioritize SNPs from whole-genome resequencing in the QTLRs

- **Cattle**
 1. coding regions
 2. RNAsnp
 - Selection of RNA structural effects with $p_{d_{max}} < 0.01$
 3. microRNA target sites

- **Chicken**
 1. Variant annotation with ANNOVAR and ENSEMBL (release 71)
 2. Overlap with conserved elements from Phastcons 7way MCE
 3. Sorting Intolerant from Tolerant (SIFT) obtained using the Ensembl Variant Effect Predictor (VEP)
 4. RNAsnp
 - Selection of RNA structural effects with $p_{d_{max}} < 0.008$ and $p_{R_{min}} < 0.1$
 5. Splice site effects
Summary of SNP effect predictions (cattle)

Finnish Ayrshire

- Total SNPs in QTLRs (filtered): 240,051
- Total SNPs in coding regions: 1834
- Stop-gain mutations: 2
- Splicing variants: 5
- Nonsynonymous variants: 454
- SIFT deleterious: 93

Brown Swiss

- Total SNPs in QTLRs (filtered): 166,933
- Total SNPs in coding regions: 1254
- Stop-gain mutations: 3
- Splicing variants: 5
- Nonsynonymous variants: 316
- SIFT deleterious: 62

Non-coding regions

<table>
<thead>
<tr>
<th></th>
<th>Finnish Ayrshire</th>
<th>Brown Swiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAsnp</td>
<td>936</td>
<td>863</td>
</tr>
<tr>
<td>microRNA target sites</td>
<td>27</td>
<td>22</td>
</tr>
</tbody>
</table>
500 SNPs (from 443,802) were to be selected for further validation.

<table>
<thead>
<tr>
<th>Selected SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding regions</td>
</tr>
<tr>
<td>Stop-gain mutations</td>
</tr>
<tr>
<td>Splicing variants</td>
</tr>
<tr>
<td>SIFT deleterious and conserved</td>
</tr>
<tr>
<td>Non-coding regions</td>
</tr>
<tr>
<td>RNAsnp effect</td>
</tr>
<tr>
<td>mature microRNA</td>
</tr>
</tbody>
</table>

1251 most conserved (PhastCons score) SNPs were chosen from the 1420 SNPs predicted to be deleterious by the SIFT method.
Acknowledgments

within QUANTOMICS

- ULEI: **Mario Fasold**, Anne Nitsche, Gero Doose, **Hakim Tafer**
- Roslin: Jacqueline Smith, Almas Gheyas, Dave Burt
- MTT: Johanna Vilkki
- UMIL: Marlies Dolezal
- Toine Roozen

outside QUANTOMICS

- Vienna: Ivo Hofacker
- RTH Copenhagen: Radhakrishnan Sabarinathan, Stefan E. Seemann, Jan Gordkin