Gastrointestinal ecosystem and immunological responses in pigs after weaning fed liquid diets containing whey permeates fermented with different LAB

Sugiarto
Department of Animal Sciences, Faculty of Science and Technology, University of Aarhus, Denmark
Outline:

› Backgrounds
› Objectives of study
› Experimental design
› Findings
Backgrounds

› Feeding liquid diet:
 »»» Keep high and regular feed and water intake post-weaning

« « « Risk for enteropathogenic infection when trough system is used
 (soaking period allows proliferation of *enterobacteriaceae*)
Backgrounds

› Whey permeate (WP):
 » Byproduct of cheese-making ≈ rich in lactose
 » Potentially synbiotic fermented product that may be added to the liquid diet:
 o Prevent the overgrowth of enterobacteriaceae during feeding
 o Exert both prebiotic and probiotic effect
Backgrounds

»»» Beneficial effects of fermented products for gut health ≈ lactic acid bacteria (LAB)

««« The effect of LAB ≈ species and strain specific
Objective of study

- Investigate the effect of feeding liquid diets containing WP fermented with different LAB species on GIT microbial populations and mucosal immune responses of *E. coli* F4 infected pigs after weaning.

Hypotheses:
Feeding fermented-WP may balance gut microbiota and modulate mucosal immunity of pigs in response to ETEC invasion.

The effect of fermented-WP on gut microbiology and immunology may depend on the species of LAB used to ferment WP.
Experimental design

<table>
<thead>
<tr>
<th></th>
<th>INF−WP−</th>
<th>INF+WP−</th>
<th>INF+W P+</th>
<th>INF+W P+ LAB1</th>
<th>INF+W P+ LAB2</th>
<th>INF+W P+ LAB3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diets</td>
<td>n=6</td>
<td>n=8</td>
<td>n=10</td>
<td>n=8</td>
<td>n=10</td>
<td>n=10</td>
</tr>
<tr>
<td>Control diet</td>
<td>Control diet</td>
<td>Control diet</td>
<td>Diet + non-fermented WP</td>
<td>Diet + WP fermented with S. thermophilus/L. bulgaricus</td>
<td>Diet + WP fermented with L. plantarum</td>
<td>Diet + WP fermented with W. viridescens</td>
</tr>
<tr>
<td>E. Coli F4</td>
<td>•</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. Coli F4 challenge</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaning day</td>
<td>^</td>
<td></td>
</tr>
<tr>
<td>E. Coli F4 challenge</td>
<td>^</td>
<td>^</td>
<td></td>
</tr>
<tr>
<td>Faecal sampling</td>
<td>^</td>
<td>^</td>
<td>^</td>
<td>^</td>
<td>^</td>
<td>^</td>
<td>^</td>
<td>^</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Killing and sampling (digesta & SI)</td>
<td>^</td>
<td></td>
</tr>
</tbody>
</table>
Composition of the experimental diets (%)

<table>
<thead>
<tr>
<th>Items</th>
<th>Control</th>
<th>WP groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP (Variolac 830)</td>
<td>0</td>
<td>#</td>
</tr>
<tr>
<td>Barley</td>
<td>20.000</td>
<td>20.000</td>
</tr>
<tr>
<td>Wheat</td>
<td>48.200</td>
<td>41.200</td>
</tr>
<tr>
<td>Dehulled toasted soybean meal</td>
<td>16.690</td>
<td>17.610</td>
</tr>
<tr>
<td>Animal fat</td>
<td>3.000</td>
<td>3.000</td>
</tr>
<tr>
<td>Soy protein concentrate</td>
<td>3.000</td>
<td>3.250</td>
</tr>
<tr>
<td>Potato protein</td>
<td>5.000</td>
<td>5.000</td>
</tr>
<tr>
<td>Other*</td>
<td>4.110</td>
<td>3.940</td>
</tr>
</tbody>
</table>

#WP included in the diet = 64 g WP per kg diet

L-Lysine HCL, DL-Methionine, L-Threonine, L-Tryptophan, L-Valine, Monocalcium phosphate, Calcium carbonate, 38% Ca, Sodium chloride, Natrupalos 5000 (100g/t), Vitamin and mineral premix
Preparation of inoculum

-80°C stock

Streaked on MRS plate, incubated at 37°C overnight, aerobic

Picked single colony, inoculated in MRS broth, incubated at 37°C, overnight, aerobic
Preparation of fermented WP

1. 70 g WP + 1 g yeast extract dissolved in 1000 mL water
2. Pasteurized at 80°C, 20 min
3. Let the suspension cool, and adjusted to pH 6.0
4. Inoculated with 4 mL of the LAB-inoculated MRS broth
5. Incubated at 37°C, 24 h, aerobic, to reach pH 4.4 and 10⁸ cfu LAB/mL
6. Store at 4°C
Preparation of diets

Immediately before feeding

INF−WP−

INF+WP−

INF+WP+

INF+WP+LAB1

INF+WP+LAB2

INF+WP+LAB3

Dry feed = 1 wt

Water = 2.5 v

Water = 1.6 v

Dry feed = 1 wt

WP fermented with LAB1 = 0.9 v

WP fermented with LAB1 = 0.9 v

WP fermented with LAB1 = 0.9 v

Water = 1.6 v

Water = 1.6 v

Water = 1.6 v

Non fermented WP = 0.9 v

INF−WP−

INF+WP−

INF+WP+

INF+WP+LAB1

INF+WP+LAB2

INF+WP+LAB3
Performance of pigs

Feed intake, d1–11

Weight gain, d1–11

SE=691; P=0.20

SE=280; P<0.001

gram
Faecal-haemolytic *E. coli*

- $P_{\text{treatment}} = 0.55$
- $P_{\text{day}} < 0.001$
- $P_{\text{treatment} \times \text{day}} = 0.48$
- SE = 0.26

Log CFU/g

Day of experiment

- INF–WP–
- INF+WP–
- INF+WP+
- INF+WP+LAB1
- INF+WP+LAB2
- INF+WP+LAB3
Faecal-LAB

Log CFU/g

Day of experiment

INF–WP– INF+WP– INF+WP+ INF+WP+LAB1 INF+WP+LAB2 INF+WP+LAB3

$P_{\text{treatment}} = 0.49$

$P_{\text{day}} < 0.001$

$P_{\text{treatment} \times \text{day}} = 0.53$

$SE = 0.21$
F-Total coliform

- **Log CFU/g**
- **Day of experiment**
- $P_{\text{treatment}}=0.89$
- $P_{\text{day}}<0.001$
- $P_{\text{treatment} \times \text{day}}=0.76$
- SE=0.19

F-C. perfringens

- **Log CFU/g**
- **Day of experiment**
- $P_{\text{treatment}}=0.10$
- $P_{\text{day}}<0.001$
- $P_{\text{treatment} \times \text{day}}=0.36$
- SE=0.55

F-Yeast

- **Log CFU/g**
- **Day of experiment**
- $P_{\text{treatment}}=0.59$
- $P_{\text{day}}=0.01$
- $P_{\text{treatment} \times \text{day}}=0.17$
- SE=0.41

F-Total anaerobic bacteria

- **Log CFU/g**
- **Day of experiment**
- $P_{\text{treatment}}=0.74$
- $P_{\text{day}}=0.01$
- $P_{\text{treatment} \times \text{day}}=0.78$
- SE=0.09
Digesta-total coliform

- **Log CFU/g**
- **P_{treatment} = 0.06**
- **P_{segment} < 0.001**
- **P_{treat*seg} = 0.68**
- **SE = 0.28**
Dige sta-LAB: *coliform* ratio

![Graph showing coliform ratio in different segments of the digestive tract.](image)

- **Stomach**: INF–WP–, INF+WP–, INF+WP+, INF+WP+LAB1, INF+WP+LAB2, INF+WP+LAB3
- **Distal-SI**: INF–WP–, INF+WP–, INF+WP+, INF+WP+LAB1, INF+WP+LAB2, INF+WP+LAB3
- **Caecum**: INF–WP–, INF+WP–, INF+WP+, INF+WP+LAB1, INF+WP+LAB2, INF+WP+LAB3
- **Mid-colon**: INF–WP–, INF+WP–, INF+WP+, INF+WP+LAB1, INF+WP+LAB2, INF+WP+LAB3

- \(P_{\text{treatment}} = 0.07 \)
- \(P_{\text{segment}} < 0.001 \)
- \(P_{\text{treat \times seg}} = 0.89 \)
- \(SE = 0.06 \)
Digesta-LAB

- $P_{treatment} = 0.56$
- $P_{segment} < 0.001$
- $P_{treatment*segment} = 0.33$
- $SE = 0.14$

Digesta-Yeast

- $P_{treatment} = 0.43$
- $P_{segment} = 0.02$
- $P_{treatment*segment} = 0.19$
- $SE = 0.26$

Digesta-Total anaerobic bacteria

- $P_{treatment} = 0.53$
- $P_{segment} < 0.001$
- $P_{treatment*segment} = 0.11$
- $SE = 0.16$
Mucosal IgA – 90%SI

SE = 0.06; P = 0.02

mg/g

INF–WP– | INF+WP– | INF+WP+ | INF+WP+LAB1 | INF+WP+LAB2 | INF+WP+LAB3

ab | b | b | ab | b | b
Mucosal IgM – 90%SI

SE=0.34; P=0.11
Biliary IgA and IgM

IgA
- SE = 1.70; $P = 0.08$

IgM
- SE = 0.79; $P = 0.49$

The graphs show the levels of IgA and IgM in different conditions, with the bars representing the concentrations in mg/dL.
Gene expression level

IL-10

- INF-WP-
- INF+WP-
- INF+WP+LAB1
- INF+WP+LAB2
- INF+WP+LAB3

- Fold change
- SE=0.16; P=0.02

Cox-2

- INF-WP-
- INF+WP-
- INF+WP+LAB1
- INF+WP+LAB2
- INF+WP+LAB3

- SE=0.7; P=0.17
Gene expression level

TNF-α

SE = 0.26; *P* = 0.10

IL-2

SE = 0.25; *P* = 0.55
Summary of results

› Feeding fermented-WP had no sig. impacts on faecal microbial population across the sampling days.

› Fermented-WP tended to reduce *coliform* bacteria and increase LAB:*coliform* ratio in the GIT digesta, but had no impact on LAB, yeast, and total anaerobic bacteria.

› Feeding WP or fermented-WP tended to reduce production of IgA and IgM in the distal intestine and bile of the challenged pigs.

› Treatments had impact on the gene expression level of IL-10, but not on Cox-2, TNF-± and IL-2. The effect of LAB on IL-10 seemed to be species dependent.

› Treatments had no impact on the intestinal dimension of pigs (not shown).
Discussion of results

› Higher LAB: *coliform* ratio in digesta of pigs fed fermented-WP was most likely ascribed by the lower counts of *coliform* bacteria.

>>> Feeding fermented-WP reduced the growth of *coliform* resulting in less immune-stimulation (less Cox-2 expression and IgA and IgM).

Feeding fermented-WP maintained GIT microbial ecosystem and modulated the mucosal immune responses of *E. coli* F4 challenged pigs.

The effect of LAB on host immune systems seems to be species dependent.
Acknowledgment

› PhD supervisors: Charlotte Lauridsen, Ph.D. and Bent. B. Jensen, Ph.D. (Aarhus University, Denmark)

› Sarmauli I. Manurung (National Veterinary Institute, Technical University of Denmark)
Thank you for your attention