Predicting lifespan of dairy cows
Phenotypic and genetic change during life

Mathijs van Pelt
Gerben de Jong and Roel Veerkamp
Introduction - Longevity

- Longevity = productive lifespan = days between 1st calving and last test date
 - Available when cow is culled

- Current genetic evaluation in The Netherlands
 - Piecewise Weibull Model
 - Survival Kit software (Ducrocq & Sölkner)
 - Predictors included with selection index
Introduction - Longevity

Problem:
- Breeding values fluctuate too much
- Especially from 1st to 2nd crop information

Hypothesis:
- Model is too simplistic in modelling the genetic variation in longevity
- Assumes longevity is genetically same trait during life
Aim

Investigate the phenotypic and genetic (co-)variation of longevity

1. During total lifespan

2. Within and across lactations
Material and methods – Data

- National dataset available from CRV
 - Pedigree (20M), lactations (40M), movements (100M)

- Total dataset
 - Per cow one record for each month in productive life
 - Cows present in period 1988 - 2012
 - 370M records of 10M cows in total

- Dataset sized down
 - 27 herds
 - ~25K black & white cows (1-120 months in productive life)
 - ~600 sires
 - ~850K records
Material and methods – Genetic analysis

- Random regression model

\[Y = X\beta + Za + Zp + e \]

\(Y \) = survival (1 – 120 months in productive life)

\(\beta \) = fixed effects
- Herd-year-season of calving
- Year-season of observation
- Parity-month in lactation
- Parity-year-season of calving
- Age at first calving (2\(^{nd}\) order Legendre polynomial)
- Month in life (4\(^{th}\) order Legendre polynomial)

\(a \) = additive genetic random effect

\(p \) = permanent environment random effect

- 2\(^{nd}\) order Legendre polynomials for \(a \) and \(p \)
Material and methods – Genetic analysis

- Time covariables for a and p in random regression (RR)
 1. During total lifespan
 - RR on months in life (MIL)
 2. Within and across lactations
 - RR per parity on months in milk (par x MIM)
 - Parity 1, 2, 3+ with a maximum of 18 months in milk

- Use of uncorrelated residual classes
 1. MIL: 40 classes of 3 months
 2. par x MIM: 3 parity groups x 18 MIM classes

- Analysis with ASREML (Gilmour et al., 2009)
Results – phenotypic means (MIL)
Results – phenotypic means (par x MIM)

![Graph showing parity x months in milk with number of records and monthly survival.]

- Number of records:
 - Parity x months in milk:
 - 6: 35,000
 - 12: 28,000
 - 18: 21,000
 - 6: 14,000
 - 12: 10,000
 - 18: 6,000

- Monthly survival (percentage):
 - Parity x months in milk:
 - 6: 98%
 - 12: 96%
 - 18: 94%
 - 6: 92%
 - 12: 90%
 - 18: 88%
Results – Genetic parameters (MIL)

<table>
<thead>
<tr>
<th>months in life</th>
<th>variance in %</th>
<th>phenotypic mean (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>genetic</td>
<td>permanent environment</td>
</tr>
<tr>
<td>2</td>
<td>7.3</td>
<td>5.5</td>
</tr>
<tr>
<td>20</td>
<td>6.4</td>
<td>4.8</td>
</tr>
<tr>
<td>40</td>
<td>5.2</td>
<td>3.9</td>
</tr>
<tr>
<td>60</td>
<td>12.4</td>
<td>9.3</td>
</tr>
<tr>
<td>80</td>
<td>48.4</td>
<td>36.3</td>
</tr>
<tr>
<td>100</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>118</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Results – Genetic correlations (MIL)

months in productive life

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Color bar:
- 1.00
- 0.75
- 0.50
- 0.25
- 0.00
- -0.25
- -0.50
- -0.75
- -1.00
Results – Genetic correlations (par x MIM)

parity x months in milk

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-0.25 -0.50 -0.75 -1.00
0.00 0.25 0.50 0.75 1.00
Conclusions

- Survival is a different trait across and within lactations
 - Differences in phenotypic means
 - Genetic correlations < 0.90

- Modelling in a more complex way to get:
 - Better understanding of survival
 - More stable breeding values
Thank you for your attention

Questions?

Project is part of

mathijs.vanpelt@wur.nl