Genotyping cows for the reference makes a small breed competitive

J.R. Thomasen¹,², A.C. Sørensen¹, M.S. Lund¹ and B. Guldbbrandtsen¹

¹Aarhus University, Department of Molecular Biology and Genetics, Denmark
²VikingGenetics, Denmark
Small active populations challenged by Genomic Selection

- Low reliabilities of genomic predictions due to small sire reference population
- Limited possibilities for cooperation compared to Holstein
- Across breed predictions – limited gain in reliability so far

Danish Jersey as model breed
Low reliabilities limit efficiency of genomic selection

(Thomasen, 2013)
Aim

• Evaluate the value of increasing the reference population

 • Adding genotyped cows
 • 2,000 annually

• Adding progeny tested bulls
 • From 15 to 500 annually
Method and traits

- Stochastic approach
 - Finite locus model

- Breeding goal condensed into two traits
 - Production trait
 - $h^2=0.30$
 - Economic value: 83 Euro
 - Functional trait
 - $h^2=0.04$
 - Economic value: 82 Euro
 - Genetic correlation between traits -0.30
Comparisons between schemes

• **Hybrid**
 - Mixed use of YB and PB as bull sires
 - Actual genomic scheme in Danish Jersey

• The **Turbo** breeding scheme
 - No use of proven bulls
Simulation design

Historic population
- 500 generations
 - LD
 - QTL

Sire reference population
- 20 years
 - Conventional scheme
 - 1000 reference bulls

Genomic Breeding Schemes
- 15 years
 - Evaluation
Comparisons of breeding schemes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Info</th>
<th>ΔG/year (€)</th>
<th>ΔF/gen. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>60 PB/yr</td>
<td>24.9<sup>a</sup></td>
<td>1.97<sup>a</sup></td>
</tr>
<tr>
<td>Hybrid</td>
<td>+ 2,000 cows/yr</td>
<td>27.4<sup>b</sup></td>
<td>1.55<sup>b</sup></td>
</tr>
<tr>
<td>Turbo</td>
<td>60 PB/yr</td>
<td>28.1<sup>b</sup></td>
<td>1.78<sup>a</sup></td>
</tr>
<tr>
<td>Turbo</td>
<td>+ 2,000 cows/yr</td>
<td>34.6<sup>c</sup></td>
<td>1.43<sup>b</sup></td>
</tr>
</tbody>
</table>
Reliability increases remarkably by adding genotyped cows to reference

Hybrid

Turbo

Progeny test
+2000 cows/yr
+60 PB/yr
Progeny tested bulls and genetic gain

![Graph showing genetic gain (Euro) vs. No. Progeny tested for Turbo and Hybrid.]

- Turbo: Genetic Gain (Euro) increases with No. Progeny tested.
- Hybrid: Genetic Gain (Euro) remains relatively stable with No. Progeny tested.

Daughter group size:
- 100
- 50
- 25
- 17
- 13
- 10
Economic evaluation of hybrid scheme

• Assumption
 ➢ Cost of genotyping: € 60 per cow (10K chip)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Gain in reliability</th>
<th>Relative Profit* (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sire reference +60 PB/yr</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>+2000 cows/yr</td>
<td>0.38 (Simulation)</td>
<td>111.1</td>
</tr>
<tr>
<td>+2000 cows/yr</td>
<td>0.20</td>
<td>106.5</td>
</tr>
<tr>
<td>+2000 cows/yr</td>
<td>0.10</td>
<td>102.6</td>
</tr>
<tr>
<td>+2000 cows/yr</td>
<td>0</td>
<td>98.8</td>
</tr>
</tbody>
</table>

* Deterministic (ZPLAN)
Genotyping Cows

- Genotyping cows:
 - Increases monetary genetic gain (10% to 23%)
 - Reduces rate of inbreeding (~20%)
 - Increases reliabilities of GEBV
 - Is profitable

- Most benefit in turbo schemes

- Genotyping cows makes a small breed competitive

- Next Step
 - Genotyping of 10,000 Danish Jersey females this year
Reliability of GEBV- varied number of progeny tested bulls

Hybrid

Turbo

500 YB
100 YB
60 YB
15 YB

500 YB
100 YB
60 YB
15 YB