Sensor-based monitoring of post-calving cows in a robotic dairy farm

M. Steensels, C. Bahr, D. Berckmans, A. Antler, E. Maltz and I. Halachmi
Outline

• Aim
• Why post-calving diseases?
• Why in robotic dairy farm?
• Material & Methods
• Results
• Discussion
• Conclusion
Aim

• Apply a behaviour and performance based disease detection model for post-calving cows in a robotic dairy farm
Why post-calving diseases?

• Prevalence

 o 10 to 50 % of cows ketosis and/or metritis
Why post-calving diseases?

• What is:
 o Ketosis?
 • Metabolic disorder
 o Metritis?
 • Inflammation of the uterus

• Diagnosis
 o Veterinarian → routine check
Why post-calving diseases?

- Early lactation: 3 weeks after calving
- Causes
Why in robotic dairy farm?

- Cows ‘choose’ how to spend their time
Why in robotic dairy farm?

• But: Fetching cows disturbs routine
Why in robotic dairy farm?

- Availability of sensors
 - Milk yield
 - Body weight
 - Visits to the robot
 - Rumination time
 - Activity
 - …
Material and Methods

- Commercial robotic dairy farm
 - 250 Israeli-Holstein cows

- 5 milking robots – behaviour and performance sensors
 - Milk yield
 - Body weight
 - Visits to the robot
 - Rumination time
 - Activity
DO you have pictures or give a description of the sensors. Which behaviour is being measured? which performance?

Van Herem, Tom, 23/08/2014
Model calibration

- All post-calving diseases 5-21 DIM
- Variables: Milk yield, rumination time, activity, body weight relative to body weight at calving, number of milkings
- Model development with historical data (1 year)
- Tree Based Model – cut-off threshold 0.5

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Reference = Veterinarian</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 111</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Sick</td>
</tr>
<tr>
<td>Healthy</td>
<td>72</td>
</tr>
<tr>
<td>Sick</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
</tr>
</tbody>
</table>

Agricultural Research Organization (ARO) Israel
Model validation

Cows divided into 2 groups – Two validations:
- Validation I:
 Model is followed - cows only brought to veterinarian when model indicates disease
- Validation II:
 All cows checked by veterinarian, data fed to model and compared to diagnosis of veterinarian
Validation I

• Every Sunday:
 o Model check of cows 5-21 days after calving
 o List of cows at risk for disease → to farmer
 • Cut-off threshold = 50% chance of being ill
 o Veterinarian check
Validation I: Preliminary results

- **34 cows**

<table>
<thead>
<tr>
<th>Model outcome</th>
<th>Diagnosis of veterinarian</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healthy</td>
<td>17</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Ill</td>
<td>3</td>
<td>13</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.85</td>
<td>0.93</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- Veterinarian confirms model outcome
Validation II: Preliminary results

- Behaviour and performance data are fed to model and compared to the diagnosis of the veterinarian

- 31 cows

<table>
<thead>
<tr>
<th>Model outcome</th>
<th>Reference = veterinarian</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healthy</td>
<td>Ill</td>
</tr>
<tr>
<td>Healthy</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Ill</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0.69</td>
<td>0.44</td>
</tr>
</tbody>
</table>

- Model ≠ reference (veterinarian)
Discussion

• Severe – moderate – light cases of ketosis / metritis
• Model = tool, farmer = decision (e.g. risk cows)
• Separating only part of the cows for the veterinary check
 o Time saving
 o Less disturbance for cows
• Model: daily 🔄 Vet: weekly
 o Now model is only compared with the day of the diagnosis of the veterinarian → too early or too late to detect problem?
Discussion

• Imbalance in parity
 o Disease prevalence is different in younger and older cows

• Future research:
 o Consequences
 • Fertility
 • Culling rate
 • Milk yield
 • Labour
Conclusions

Combine existing robotic milking farm data → develop and validate tree-based model → detect post-calving health problems

Thank you!

- Machteld.Steensels@biw.kuleuven.be
- halachmi@volcani.agri.gov.il
- emaltz@volcani.agri.gov.il