Variable nutritional trajectory contributes to the robustness of beef cows whatever their body condition at calving
A. De La Torre et al., Robustness of beef cows

_01 Context

Beef suckling cows & french beef cattle production systems

Charolais cows: late maturing beef breed

carcass weight ≈ 450 kg
The concept of ROBUSTNESS:

Numerous definitions

The robustness is a property that accounts of the ability of a system to maintain its function despite external or internal perturbations

Kitano, 2004

⇒ At the animal level, the robustness is defined as its ability to maintain its functioning and being resilient when facing environmental disturbances

Strandberg, 2009

⇒ Such a capacity relies on adaptive abilities of animals that may involve trade-off between life functions when environment becomes limiting
From a systemic point of view

In changing environment

Dynamic biological system

Production

Main biological functions
- growth, maintain itself
- produce
- reproduce

Over a productive cycle

⇒ Trade-off between functions

⇒ Cows have to reach an optimal resources allocation to achieve functions whatever the environmental constraints

That question has been considered in high-producing dairy cows
(Kirkland and Gordon, 2001
Friggens and Newbold 2007, Martin and Sauvant, 2010...)

Robustness of suckling beef cows?

What indicators?
The cow as an active system

E_{\text{residual}} = E_{\text{intake}} - E_{\text{(production and tissue growth)}}

- **E_{\text{intake}}**: Digestive and metabolic processes
- **E_{\text{production and tissue growth}}**: Production / Reproduction
- **Body reserves**
- **Metabolism**
- **Maintenance**
- **Growth**
- **Overall metabolism**
Objectives:

To propose an indirect approach to apprehend robustness in beef cows

- Differences in Eresid between cows experiencing from calving a variable nutritional trajectory and cows subjected to a non limiting (=stable) nutritional trajectory

- Test the impact of initial body condition at calving on Eresid
Material and methods
The nutritional challenge involving adaptive response to changing environment

Constraining period (120 days)
- 40 multiparous charolais cows
 - Calving (d 0)
 - Fat cows (BCS = 2.8 ± 0.08)
 - Thin cows (BCS = 2.0 ± 0.04)

Feeding
- Energy level
 - Stable
 - FS (n=9)
 - Variable
 - FC (n=9)
 - Stable
 - TS (n=9)
 - Variable
 - TV (n=10)

Requirements
- d 120
 - 39 MJ/d

Recovery grazing period (76 days)
- 40 ares per cow/calf pair
- Non-limited permanent pasture with high nutritive quality

A. De La Torre et al., Robustness of beef cows
Calculation method

Working hypothesis

\[E_{\text{resid}} = E_{\text{intake}} - E_{\text{lactation}} - E_{\text{foetus}} +/- E_{\text{mobilized \/retained tissues}} \]

expressed in **Net Energy for lactation in MJ**

Constraining period

- Weight-suckle-Weight method (Le Neindre, 1973)
- Adipose cell size measurements
- Allometric equations (Robelin & Daenicke, 1980)
- Compocow model (Garcia & Agabriel, 2008)

\[E_{\text{lact.}} = 3.2 \text{ MJ x kg of milk drunk} \]

Recovery Period

- Estimation of individual intake of grazed grass using fill unit system (Faverdin et al, 2011)
- NE tissues for 1 kg body mass change = 66.7MJ x %lipids + 39MJ x %proteins
Results
Milk production & ADG of calves

Milk yield (kg/day)

Constraining period (120d)

Recovery period (76 d)

Calf growth rate
0.8 kg/d 1.1 kg/d

Post-partum weeks

Milk production is maintained suggesting the priority of lactation function in beef cows
Body composition changes
Over the nutritional challenge (196 days)

End of the nutritional challenge: recovery of LW and body condition
→ adaptive trajectories: mobilization and reconstitution of body reserves
Eresid variations over the nutritional challenge (196 days)

\[
\Delta \text{Eresid} = 35\% \text{ according to energy level and body reserves at calving}
\]
Energy allocation in Fat and Thin cows

- Energy put in milk is similar between groups (≈ 30% Eintake)
- Body reserves buffer differences between energy supply and requirements

Eresid (MJ/d/kg\(^{0.75}\))

- Thin cows exhibited the same Eresid changes than fat cows

=> no differences in energy allocation
Conclusions / Perspectives
Eresid changes over productive cycle

- Ability of beef cows to maintain milk production in changing environment

- Our experimental design allows to observe Eresid changes
 - ΔEresid : 35%

- Eresid changes could be an indirect criteria of robustness since reflect safeguarding energy allocation to life functions

Further investigations to validate:
- Relevance of Eresid as a trait of robustness in changing nutritional environment
Acknowledgments

The staff of the experimental unit of Monts d’Auvergne
Isabelle Constant for her technical assistance throughout the experiment
A. De La Torre et al., Robustness of beef cows

Theoretical requirements

- **Constraining period**
 - Days post-partum: 10, 120
 - Nutritional requirements: 70%

- **Recovery period**
 - Days post-partum: 120, 196
 - Nutritional requirements: 120%

NUTRITIONAL CHALLENGE