Temperature & humidity influence milk yield & quality in Scottish dairy cows

Davina Hill & Eileen Wall
davina.hill@sruc.ac.uk

65th Annual EAAP Meeting
Tues 26th August 2014

Leading the way in Agriculture and Rural Research, Education and Consulting
Climate change & livestock

• Farming must adapt to a changing climate
 – Increases in temperature & extreme weather events

• Heat stress
 – affects productivity, fertility & health
 – occurs when animals experience conditions outside thermal comfort zone
Heat stress

- Tolerance to high temperatures depends on humidity
- Temperature Humidity Index (THI)
 - indicator of conditions causing heat stress
- Temperate regions
 - animals have lower tolerance
Aim

• How does THI influence milk yield & quality?
 – Holstein Friesian cows in Scotland

• Predictions for 2080 for S. Scotland
 – increased temperature
 • mean daily maximum increase 4.3°C
 – 0-5% ↓ in humidity

• Hypotheses
 – Performance declines at extremes of THI
 – Depends on management
Subjects & maintenance

• 2 genetic lines:
 – Select vs Control for kg fat + protein
 – Managed together
• 2 diet groups:
 – High vs Low Forage
Management at 2 research farms

Farm 1
• 1990 - 2002
• Calving: Sept-Jan
• Indoors for ~200 days from day calved → out
• End of June → out
• Milked 2x a day

Farm 2
• 2002 - 2011
• LF: continuously housed
• HF: indoors, summer grazing
• Milked 3x a day
Animal data

- 4-305 days in milk
- 12 months’ acclimatisation
- Cows inside or outside on test day – ‘management’

- 1362 cows
 - 752674 daily yield records
 - 87446 weekly fat & protein records
Weather data

5 weather elements

• Temperature (T_{db})
• Humidity (RH)
• Precipitation
• Wind speed
• Sunshine

• Closest weather station to each farm

• $\text{THI} =$

$$(1.8 \times T_{db} + 32) - ((0.55 - 0.0055 \times RH) \times (1.8 \times T_{db} - 26))$$

• Moving means across week before test day

NRC, 1971
Model fit by REML

\[y \sim \mu + \text{Weather} + \text{Management} + \text{Weather} \times \text{Management} + \text{Feed Group} + \text{Genetic Group} + \text{FG} \times \text{GG} + \text{Farm} + \text{Lactation no} + \text{Days in milk} + \text{cow id} + \text{calving date} + \text{test date} + e \]

- \(y = \)
 - Milk yield (kg)
 - Fat content (\%)
 - Protein content (\%)

- \(\text{Weather} = \)
 - THI
 - Wind speed
 - Sunshine
 - Precipitation

THI, wind, sun:
 tested for linear, quadratic, cubic & quartic terms

Days in milk:
 Linear & quadratic terms
Results

• Mean THI at 0900h: 49 ± 0.1

• THI influenced milk yield & quality
 – Effects depended on whether cattle were inside or outside on test day

9% of days
Outdoors: lower yield at THI extremes

THI ≥55 on 39% of days

Indoors: overall decrease with THI
- Differences in diet
- Warmer inside shed

Hill & Wall, Dairy cattle in a temperate climate, Animal (forthcoming)
THI & management influence fat %

• Outdoors: fat % decreases with THI
• Indoors: higher fat % at intermediate THI

Hill & Wall, Dairy cattle in a temperate climate, Animal (forthcoming)
THI & management affect protein %

- Protein % decreases with THI
- More pronounced decline in animals outdoors

Hill & Wall, Dairy cattle in a temperate climate, Animal (forthcoming)
Conclusions

• Extremes of THI currently impact dairy productivity in Scotland
• THI predicted to increase over 21st century
• Effects of THI depended on management
 – Potential to offset losses through changes in diet & housing
Acknowledgements

• Farm staff & data managers at SRUC Dairy Research Centre

http://mets-trading-dairy.blogspot.co.uk