The use of carcass traits collected in the abattoir using video image analysis to improve beef yield

Dr Kirsty Moore, R Mrode & M Coffey
Overview

- Current Genetic evaluations
- UK beef genetic evaluation developments
 - EUROP carcase trait evaluations
 - Genomic evaluations for VIA carcase traits
Current carcase trait evaluations

- Traditional BLUP EBVs for proxy traits
- Limousin Pedigree sector (~20,000/year)
 - 400 day weight (~5,000/year; 25%)
 - Ultrasound fat and muscle depth (~1,500/year; 7.5%)
In the age of the genotype......

PHENOTYPE IS KING!
Why are we interested in abattoir records?

Answer: the quantity of extra information available

e.g. Limousin

- ~1,500 animals / year ultrasonically scanned
- In 2011 abattoir records on ~93,000 animals Limousin/Limousin cross
- Of these ~20,000 had Limousin sire recorded
- The addition of this extra information should increase the accuracy (reliability) of genetic evaluations
Valuing carcases

• Commercial farmers paid using EUROP grid
• Paid per kg deadweight
• + penalty/premium based on
 – Conformation class
 – Fat class

• VIA provides carcass component traits
 – Multiplied by retail value
<table>
<thead>
<tr>
<th>Carcase weight</th>
<th>Conformation</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>279kg</td>
<td>P-</td>
<td>3+</td>
</tr>
<tr>
<td>370kg</td>
<td>O-</td>
<td>2+</td>
</tr>
<tr>
<td>314kg</td>
<td>R=</td>
<td>1=</td>
</tr>
<tr>
<td>306kg</td>
<td>R=</td>
<td>3=</td>
</tr>
<tr>
<td>497kg</td>
<td>E=</td>
<td>2+</td>
</tr>
</tbody>
</table>

Limousin Cross steers

![Image of Limousin Cross steers]
Utilising data from multiple sources

- UK eartag
 - Carcase traits
 - Dates of birth & slaughter, sex, breed

- British Cattle Movement Service
 - UK eartag Dates of birth & death, sex, breed, pedigree (sire and dam), full movement information

- SRUC PED
 - UK eartag Dates of birth, sex, breed, pedigree (sire and dam)

Carcase trait EBVs
Combined data – June 2014

- 3.5m carcase records
 - 6 processors, multiple sites
- 89% carcase records matched to BCMS (3.1 million animal records)
- 23% had sire recorded in BCMS (~0.71 million animal records)
 - 28% for 2012+ born animals
Breeds

• **Dairy genetics** are a **major** component of beef carcases
 – Holstein Friesian the most common dam breed of the slaughter generation (accounting for 46%)

Ten most common dam breed types

<table>
<thead>
<tr>
<th>Breed code</th>
<th>Progeny Count</th>
<th>%</th>
<th>Breed code</th>
<th>Progeny Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Holstein Friesian</td>
<td>1,078,469</td>
<td>45.7</td>
<td>6 Belgian Blue</td>
<td>90,459</td>
<td>3.8</td>
</tr>
<tr>
<td>2 Limousin</td>
<td>341,457</td>
<td>14.5</td>
<td>7 Charolais</td>
<td>85,118</td>
<td>3.6</td>
</tr>
<tr>
<td>3 Aberdeen Angus</td>
<td>225,330</td>
<td>9.6</td>
<td>8 Blonde d’Aquitaine</td>
<td>31,778</td>
<td>1.4</td>
</tr>
<tr>
<td>4 Simmental</td>
<td>175,326</td>
<td>7.4</td>
<td>9 Shorthorn</td>
<td>29,526</td>
<td>1.3</td>
</tr>
<tr>
<td>5 Hereford</td>
<td>117,247</td>
<td>5.0</td>
<td>10 Saler</td>
<td>26,363</td>
<td>1.1</td>
</tr>
</tbody>
</table>
VIA genomic breeding values

• 4 year project (2012-2015)
• Limousin genomic breeding values for abattoir VIA carcase traits
 – Available 2015
• First UK genomic breeding values
Video Image Analysis (VIA)

- VBS2000
 - E+V
- Calibrated images (2D and 3D)
- Carcase weight and sex
- Mechanically grades the carcase
 - EUROP conformation and fat classes
 - 7 primal cut yields
Heritability of carcass cuts

Forequarter

- Ribs & Flank : 0.03
- Brisket : 0.25
- Shoulder : 0.79
- Chuck : 0.83

[0.15 ≤ s.e. ≤ 0.24]

Hindquarter

- Round : 0.86
- Sirloin : 0.67
- Strip-Loin : 0.49
- Rib-Roast : 0.14

[0.16 ≤ s.e. ≤ 0.23]

Striploin - steers
Opportunities to better differentiate carcasses

£750

£300

£100
Genetic Parameters

- 81,785 VIA records, 1 site
- Basic Data Edits
 - Heifers and steers aged 450 to 900 days
 - Kill dates with large amount of missing data
 - Outliers
- 30,530 record remained
 - 63% steers, 37% heifers
 - 72% cross bred, 28% purebred
 - Breed types 22% Limousin, 19% Continental beef, 42% dairy, 8% native beef and 9% other
- 5 generation pedigree
 - 98,505
 - 31% of VIA animals had sire recorded
Genetic Parameters

<table>
<thead>
<tr>
<th></th>
<th>Phenotypic Variance</th>
<th>h^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcase weight</td>
<td>43.48 (1.15)</td>
<td>0.25 (0.04)</td>
</tr>
<tr>
<td>Conformation</td>
<td>15.63 (0.35)</td>
<td>0.50 (0.04)</td>
</tr>
<tr>
<td>Fat</td>
<td>43.48 (1.15)</td>
<td>0.25 (0.04)</td>
</tr>
<tr>
<td>Fillet</td>
<td>0.03 (0.001)</td>
<td>0.19 (0.05)</td>
</tr>
<tr>
<td>Striploin</td>
<td>0.11 (0.002)</td>
<td>0.37 (0.05)</td>
</tr>
<tr>
<td>Topside</td>
<td>0.35 (0.01)</td>
<td>0.29 (0.04)</td>
</tr>
<tr>
<td>Rump</td>
<td>0.16 (0.003)</td>
<td>0.29 (0.05)</td>
</tr>
<tr>
<td>Silverside</td>
<td>0.48 (0.01)</td>
<td>0.28 (0.05)</td>
</tr>
<tr>
<td>Knuckle</td>
<td>0.15 (0.003)</td>
<td>0.33 (0.05)</td>
</tr>
<tr>
<td>Flank</td>
<td>2.57 (0.06)</td>
<td>0.28 (0.05)</td>
</tr>
</tbody>
</table>
30 Limousin sires EBVs

£447 vs £910 (£463 difference in raw retail value)
Building the Limousin reference population

- Aiming for 2,000 Limousin’s
 - VIA phenotype (accuracy of preliminary VIA EBVs)
 - medium density (50k) chip type
 - Project genotypes
 - Currently 662 genotypes
 - ~300 sampled
 - 716 HD Limousin
- 48 Limousin Sequences
Implications

• Massive benefit to the industry
 – Large numbers of records – thousands not hundreds
 – Traits of importance £
 – Stronger links in the supply chain
 – Increase efficiency ~ greenhouse gas emissions
 – Selection for dairy-beef
 – First EBVs of their kind in the UK
 • Genetic improvement
 • Stimulate the industry
Conclusions

• Developments Industry focused
• Large scale with big data sets
• Carcase traits and genomics
 – projects that are the first of their kind in the UK
• Provides a solid platform to expand and address further areas for improvement
 – Feed efficiency
 – Female fertility traits
Acknowledgements

Stuart Roberts
James Draper

Mike Coffey
Kirsty Moore
Samantha Wilkinson
Raphael Mrode
Tracey Pritchard
Tim Roughsedge

Ian Archibald
Tomasz Krzyzelewski
Alan Mason
Jamie Mackay
Arjan Tolkcamp
David Ingless

Funding:

Technology Strategy Board
Driving Innovation
EAAP 2016
European Federation of Animal Science Annual Meeting – Livestock Systems and Science
Belfast
28 August–1 Sept 2016
www.eaap2016.org