Optimizing design of small-sized nucleus dairy cattle breeding programs with minimal recording

Kariuki C.M.1,2, H. Komen1, A.K. Kahi3, J.A.M. van Arendonk1

1Wageningen University, Animal Breeding and Genomics Centre, The Netherlands
2Chuka University, Department of Animal Sciences, Kenya
3Egerton University, Department of Animal Sciences, Kenya
Acknowledgements

Netherlands Organization for International Cooperation in Higher Education (NUFFIC)
Introduction

- Current genetic improvement in developing countries is through semen importation

- GxE between regions estimated to be 0.49 (Ojango and Pollot, 2002)
Environment specific breeding programs

- Alternative approach: environment-specific breeding programs

- Limitation – minimal and erratic pedigree and performance recording at farm level (Wasike et al., 2011)

- Negatively impacts genetic evaluation of selection candidates
Objective

- Small-sized nucleus dairy cattle breeding program?
- What selection strategy to adopt?
 - Response to selection
 - Accuracy
- We ignored inbreeding for this study
Materials and Methods

- Deterministically simulated a nucleus program

Nucleus

- 100 elite dams
 - 45 daughters born annually
 - Dams selected
 - 45 sons born annually
 - Sires selected

Commercial cow population

- 10 active sires
 - 45 sons born annually
 - Sires selected

Recorded cows

Two levels: 2,500 and 5,000

Extra information for evaluation

Non-recorded cows

SelAction (Rutten et al., 2004)
Materials and Methods

Selection strategies

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>Phenotypes of nucleus dams</td>
</tr>
<tr>
<td>PT</td>
<td>Progeny testing</td>
</tr>
<tr>
<td>GS</td>
<td>Genomic selection</td>
</tr>
<tr>
<td>GS+DP</td>
<td>Genomic + nucleus dams</td>
</tr>
<tr>
<td>GS+PT</td>
<td>Genomic + progeny testing</td>
</tr>
</tbody>
</table>
Materials and Methods

- GS was implemented by mimicking a correlated trait with $h^2 = 1$ and genetic and phenotypic correlations were calculated following Dekkers (2007)

- Selected for a single trait – total merit trait

- Truncation selection with 8 age-classes
Results – response to selection (ΔR)

- Response for the basic DP scheme in genetic standard deviation (σ_g)

<table>
<thead>
<tr>
<th>Number of CRC</th>
<th>Scheme 2,500</th>
<th>Scheme 5,000</th>
<th>L (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>0.042</td>
<td>0.047</td>
<td>4.2</td>
</tr>
</tbody>
</table>

- For comparison alternative selection strategies were benchmarked against basic DP scheme and presented as a percentage
Results – response to selection (ΔR)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Number of CRC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,500</td>
<td>5,000</td>
<td>L (years)</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>13.5</td>
<td>27.0</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>24.3</td>
<td>70.3</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>GS+DP</td>
<td>24.3</td>
<td>43.2</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>GS+PT</td>
<td>16.2</td>
<td>29.7</td>
<td>6.2</td>
<td></td>
</tr>
</tbody>
</table>

Extra response as percentage of the response in DP schemes

- For these results the pedigree is assumed to be known accurately
Results – accuracy (r_I)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>2,500</th>
<th>5,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>0.62</td>
<td>0.73</td>
</tr>
<tr>
<td>GS</td>
<td>0.21</td>
<td>0.30</td>
</tr>
<tr>
<td>GS+DP</td>
<td>0.33</td>
<td>0.39</td>
</tr>
<tr>
<td>GS+PT</td>
<td>0.64</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Conclusions

- Feasibility exists for creating genetic gains through nucleus programs with minimal performance recording

- GS will have the highest responses

- Lower accuracies in GS will be offset by the higher annual responses
Thank you for your attention!

charles.kariuki@wur.nl