The design of mega dairies in India: optimal facility allocation, and how big do you want to go?

Ilan Halachmi
ARO, The Volcani Centre, Bet Dagan. Israel

EAAP 2014 Copenhagen Denmark
Please ask during the presentation
So long losers!
I’m off to India to live like a Goddess…
A mega dairy in India – in brief

• Design & management of a large-scale dairy farm require OR tools.

• In this study a combined model:
 • queuing-network, robust 6σ design,
 • simulation and optimization was developed

• Design criteria were:
 • 10,000 cows in milking,
 • intensive farming while maximized animal welfare,
 • year-round indoors, no grazing, open-large cowsheds, dry manure bedding,
 • no cubicle housing, maximizing cow resting time and worker convenience.

 All design criteria were met.

• We modeled eight farming aspects:
 * cow traffic,
 * vet treatment,
 * cow cooling,
 * workers' transportation
 * milking parlors,
 * manure handling,
 * feed-center operation,
 * a problematic junction,

 and their interrelations.
Project Aim – to design a mega dairy

- 10,000 cows in milking
- Three rotary milking parlors
- Two veterinary hospitals
- One animal-feed center
- Cow-manure handling & biogas production
- Cow cooling centers
- Calves, heifers, replacement
- Workers’ traffic and facilities
Figure 1. The mega dairy’s five traffic circles
Design tool 1. Robust 6σ design

The under-study farm milks $290 \times 12 \times 3 \times 365 \times 3 = 11,431,800$ milkings per a year.

<table>
<thead>
<tr>
<th>standard deviation</th>
<th>Percent variation (%)</th>
<th>Missed milkings per year (no sigma shift)</th>
<th>Missed milkings per year (1.5σ shift)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1σ</td>
<td>68.26</td>
<td>3628453</td>
<td>7975966</td>
</tr>
<tr>
<td>±3σ</td>
<td>99.73</td>
<td>30865</td>
<td>763678</td>
</tr>
<tr>
<td>±4σ</td>
<td>99.99</td>
<td>720</td>
<td>70877</td>
</tr>
<tr>
<td>±5σ</td>
<td>99.9999</td>
<td>6.5</td>
<td>2664</td>
</tr>
<tr>
<td>±6σ</td>
<td>99.999999</td>
<td>0.02</td>
<td>39</td>
</tr>
</tbody>
</table>
Design tool 2. closed queuing network

Figure 6. The flow of the cows throughout the treatments at the parlor’s pens
Design tool 3. Simulation model
A deterministic design problem:

Minimizes: \[F(\mu_y(X)) \]
subject to: \[g_i(\mu_y(X)) \leq 0 \]
\[X_L \leq \mu_X \leq X_U. \]

A probabilistic design problem:

Minimizes: \[F(\mu_y(X), \sigma_y(X)) \]
subject to: \[g_i(\mu_y(X), \sigma_y(X)) \leq 0 \]
\[X_L + n\sigma X \leq \mu_X \leq X_U - n\sigma X \]
\[\mu_y - n\sigma_y \geq \text{Lower specification limit} \]
\[\mu_y + n\sigma_y \leq \text{Upper specification limit} \]
\[n=6 \]
The complexity

- several facilities making up a large farm
- mutual interaction
- numerous animal-related parameters
- number of multidisciplinary fields,

- Regular design – each facility separately
- Static design (Excel) and simulation
- **no proof of optimum solution**

- animal friendly
- environment friendly
- convenient for humans
- economically feasible
- **Social aspects - local community**
- sustainability

AgResearch

Agricultural Research Organization (ARO) Israel
A mega dairy subsystems = 7 models

Seven simulation models were built

- Milking parlor cow flow (model 1)
- In-parlor treatment cow flow (model 2)
- Cow traffic to the milking parlor and cooling sheds (model 3)
- Junction flow near the milking parlor (model 4)
- Manure scraping (flow?) (model 5)
- Feed-distribution flow (model 6)
- Worker traffic flow (model 7)
A model of mega dairy as a one single system

- Optimization - maximizing capacity of each facility
- Queuing network links all the facilities into one single system
- Reliability – Quality over Time
- Robust (6 sigma) design
A mega dairy in India - results

Farming area 1. Milking parlor

Based on the model, the decision were:

- 80-stalls rotary parlor
- Rotary speed 7.5 sec / cow
A mega dairy in India - results

Farming area 2.

Cow treatment

Based on the model, the decision were:

- 102 stalls for fast treatments in the parlor after milking: fertility, hooves, lameness, drying
- Other treatments – send the cow to the hospital
- Queue length:
A mega dairy in India - results

Farming area 3. Cow traffic

Based on the model, the decision were:

- the walking time to and from the parlor should not exceed 20 min
- Otherwise the natural lying time is suppressed
- Cow’s Time-Budget
- Walking distance and lane width were design

The influence of walking time on the availability of lie down time during one 8-h shift with milking
A mega dairy in India - results
Farming area 3. Cow traffic

Cow traffic simulation program objects and user interface; the influence of walking time on the availability of cow reclining time
A mega dairy in India - results

Farming area 3.
The Junction

Agricultural Research Organization (ARO) Israel
A mega dairy in India - results

Farming area 3.
The Junction

Model suggests:

- Junction crossing time
- 10 min. or less from the parlor
- 5 min. or less from the cooling shed.
- Otherwise – the successive group is being delayed
- Consequently, a 80m buffer was designed and the junction was relocated accordingly
A mega dairy in India - results
Farming area 5.
Manure scraping

Model suggests:

- two tractor shovels are sufficient for the entire farm.
- (before the model- four shovels)
- Tractor utilization is rather high, 0.92–0.95
- The 36 cowsheds can be cleaned within 1 shift
- (before the model two shifts)

Manure-scraping simulation program objects and user interface
A mega dairy in India - results

Farming area 6. Cow-feed processing and distribution center

Model suggests:

• Two mixers and two wagons are required to finish 42 rounds within 16.25 h per day (two 8-h shifts).
• (before the model –

 three shifts, four wagon and three mixers)
A mega dairy in India - results

Farming area 7.

Labor traffic

Model suggests:

• one single bus carrying 50 passengers seems to be sufficient.
• The bus utilization was 0.28.
• Average transfer time for a worker was 0.34 h each way.
• (before the model – three busses)
Figure 7. Validation – queuing vs. regression models.
Conclusions (1)

Innovative aspects:

- (statistic CAD drawing, Excel, each components separately) **failed** to handle the mutual interaction between several facilities.
- A design concept for a mega dairy was developed.
- The model incorporates:
 - cow traffic,
 - milking parlors,
 - vet treatment,
 - manure handling,
 - cow cooling,
 - feed-center operation,
 - workers' transportation
 - A problematic junction, and their interrelations

Systems engineering

- **Design all components as one single system**

Aiming at:

- animal friendly
- environment friendly
- convenient for humans
- economically feasible
- Social aspects - local community
- sustainability

Simulation & Optimization
Conclusions (2)

• The model found bottle-necks

• The model maximized production capacity in terms of cows throughput in the milking parlor

• The simulation suggested “optimal solution”.

• The model recommendations were discussed with and were accepted by the farm managers and designers.

• In further research other aspects should be incorporate:
 • Local community interaction: social issues, animal care tradition
 • Environment
 • Branding and social networks
Open questions
How does a mega-dairy influence the local rural community?:

• Roads and water infrastructure
• Land price, and local feed supply and price
• Local tradition concerning animal care
• Odour smell, water contamination,
• Social – are the workers are locals?
• Branding and social networks?
• How big do you want to go?
• Environment, Sustainability?

Book – copy, to contribute a chapter -
halachmi@volcani.agri.gov.il Ilan Halachmi