Detection of boar taint at slaughter
Johanna Trautmann, Jan Gertheiss, Michael Wicke, & Daniel Mörlein

Johanna Trautmann

Department of Animal Sciences
Division of product knowledge - quality of animal products
EAAP, session 55, 28. August 2014
Detection of “boar taint”

legal basis

• EU-Food Hygiene Regulations 854/2004

• German Federal Regulations for Food Hygiene (AVV LmH, 2007)

• QS-Guidelines Slaughtering/Deboning (2013)
Detection of “boar taint”

no information about

→ the odors which should be evaluated

→ criteria for selecting and training human assessors
Our sense of smell: identical?

Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects

T. Hummel · G. Kobal · H. Gudziol · A. Mackay-Sim
Olfactory acuity and sensory assessment

- 7 subjects
- psycho-physical evaluation of olfactory acuity: odor detection thresholds (DT), identification (I)
- evaluation of fat samples ($n = 150/225$) to $\sim 80^\circ C$
Detection thresholds of androstenone

• 20 dilution steps
• 20 = lowest odor concentration [9.54 \times 10^{-7} \text{mM}]
• 0 = highest odor concentration [1 \text{ mM}]
• triangles
Detection thresholds of androstenone

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor detection threshold (dilution level 0 = 1mM)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

subjects
Inter-individual variation: identification of androstenone

Estimated probability of correct identification

Odor dilution level (0=1mM)
How do sensory and chemical analysis correspond?

• sensitivity = correctly identified tainted samples
• specificity = correctly identified standards
• based on the definition of

 → gold standard: GCMS
 → deviant ratings for the sensory scale study

• 499 samples
• gold standard = GCMS analysis
• tested method: sensory analysis scale 0-5
Risk analysis: example

gold standard: GCMS
tested method: sensory deviation panel mean > 3
Risk analysis: example

gold standard: GCMS
tested method: sensory deviation panel mean > 3
Conclusion

→ quantification of olfactory acuity
detection & identification ability

→ evaluation of a sensory method (risk analysis)
sensitivity and specificity
definition of the gold standard needed

→ define criteria to select assessors
Thanks

Daniel Mörlein
Lisa Meier-Dinkel
Jan Gertheiss
Thomas Hummel
Michael Wicke
Hans-Jörg Eynck
Lourens Heres
Christoph Knorr
Ernst Tholen
Christian Looft
Zhanna Loketva
Jochen Fischer
Christoph Gerlach
David Starr
...

email: johanna.trautmann@stud.uni-goettingen.de

This project is funded by
Details can be found in our paper:

Meat Science 98 (2014) 255–262

How olfactory acuity affects the sensory assessment of boar fat: A proposal for quantification

Johanna Trautmann a, Jan Gertheiss b, Michael Wicke a, Daniel Mörlein a,⁎

a Department of Animal Sciences, Meat Science Group, University of Göttingen, D-37075 Göttingen, Germany
b Department of Animal Sciences, Biometrics & Bioinformatics Group, University of Göttingen, D-37075 Göttingen, Germany

Article info

Article history:
Received 28 January 2014
Received in revised form 24 April 2014
Accepted 30 May 2014
Available online 7 June 2014

Keywords:
Boar taint
Androstenone
Skatole
Sensitivity
Odor identification
Detection threshold

Abstract

Due to animal welfare concerns the production of entire male pigs is one viable alternative to surgical castration. Elevated levels of boar taint may, however, impair consumer acceptance. Due to the lack of technical methods, control of boar taint is currently done using sensory quality control. While the need for control measures with respect to boar taint has been clearly stated in EU legislation, no specific requirements for selecting assessors have yet been documented. This study proposes tests for the psychophysical evaluation of olfactory acuity to key volatiles contributing to boar taint. Odor detection thresholds for androstenone and skatole are assessed as well as the subject’s ability to identify odorants at various levels through easy-to-use paper smell strips. Subsequently, fat samples are rated by the assessors, and the accuracy of boar taint evaluation is studied. Considerable variation of olfactory performance is observed demonstrating the need for objective criteria to select assessors.

© 2014 Elsevier Ltd. All rights reserved.